Goto

Collaborating Authors

 Li, Beichen


LSP Framework: A Compensatory Model for Defeating Trigger Reverse Engineering via Label Smoothing Poisoning

arXiv.org Artificial Intelligence

Deep neural networks are vulnerable to backdoor attacks. Among the existing backdoor defense methods, trigger reverse engineering based approaches, which reconstruct the backdoor triggers via optimizations, are the most versatile and effective ones compared to other types of methods. In this paper, we summarize and construct a generic paradigm for the typical trigger reverse engineering process. Based on this paradigm, we propose a new perspective to defeat trigger reverse engineering by manipulating the classification confidence of backdoor samples. To determine the specific modifications of classification confidence, we propose a compensatory model to compute the lower bound of the modification. With proper modifications, the backdoor attack can easily bypass the trigger reverse engineering based methods. To achieve this objective, we propose a Label Smoothing Poisoning (LSP) framework, which leverages label smoothing to specifically manipulate the classification confidences of backdoor samples. Extensive experiments demonstrate that the proposed work can defeat the state-of-the-art trigger reverse engineering based methods, and possess good compatibility with a variety of existing backdoor attacks.


AED-PADA:Improving Generalizability of Adversarial Example Detection via Principal Adversarial Domain Adaptation

arXiv.org Artificial Intelligence

Adversarial example detection, which can be conveniently applied in many scenarios, is important in the area of adversarial defense. Unfortunately, existing detection methods suffer from poor generalization performance, because their training process usually relies on the examples generated from a single known adversarial attack and there exists a large discrepancy between the training and unseen testing adversarial examples. To address this issue, we propose a novel method, named Adversarial Example Detection via Principal Adversarial Domain Adaptation (AED-PADA). Specifically, our approach identifies the Principal Adversarial Domains (PADs), i.e., a combination of features of the adversarial examples from different attacks, which possesses large coverage of the entire adversarial feature space. Then, we pioneer to exploit multi-source domain adaptation in adversarial example detection with PADs as source domains. Experiments demonstrate the superior generalization ability of our proposed AED-PADA. Note that this superiority is particularly achieved in challenging scenarios characterized by employing the minimal magnitude constraint for the perturbations.


Computational Discovery of Microstructured Composites with Optimal Stiffness-Toughness Trade-Offs

arXiv.org Artificial Intelligence

The conflict between stiffness and toughness is a fundamental problem in engineering materials design. However, the systematic discovery of microstructured composites with optimal stiffness-toughness trade-offs has never been demonstrated, hindered by the discrepancies between simulation and reality and the lack of data-efficient exploration of the entire Pareto front. We introduce a generalizable pipeline that integrates physical experiments, numerical simulations, and artificial neural networks to address both challenges. Without any prescribed expert knowledge of material design, our approach implements a nested-loop proposal-validation workflow to bridge the simulation-to-reality gap and discover microstructured composites that are stiff and tough with high sample efficiency. Further analysis of Pareto-optimal designs allows us to automatically identify existing toughness enhancement mechanisms, which were previously discovered through trial-and-error or biomimicry. On a broader scale, our method provides a blueprint for computational design in various research areas beyond solid mechanics, such as polymer chemistry, fluid dynamics, meteorology, and robotics.


Learning to Reason in Round-based Games: Multi-task Sequence Generation for Purchasing Decision Making in First-person Shooters

arXiv.org Artificial Intelligence

Sequential reasoning is a complex human ability, with extensive previous research focusing on gaming AI in a single continuous game, round-based decision makings extending to a sequence of games remain less explored. Counter-Strike: Global Offensive (CS:GO), as a round-based game with abundant expert demonstrations, provides an excellent environment for multi-player round-based sequential reasoning. In this work, we propose a Sequence Reasoner with Round Attribute Encoder and Multi-Task Decoder to interpret the strategies behind the round-based purchasing decisions. We adopt few-shot learning to sample multiple rounds in a match, and modified model agnostic meta-learning algorithm Reptile for the meta-learning loop. We formulate each round as a multi-task sequence generation problem. Our state representations combine action encoder, team encoder, player features, round attribute encoder, and economy encoders to help our agent learn to reason under this specific multi-player round-based scenario. A complete ablation study and comparison with the greedy approach certify the effectiveness of our model. Our research will open doors for interpretable AI for understanding episodic and long-term purchasing strategies beyond the gaming community.