Goto

Collaborating Authors

 Li, Aodong


Anomaly Detection of Tabular Data Using LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown their potential in long-context understanding and mathematical reasoning. In this paper, we study the problem of using LLMs to detect tabular anomalies and show that pre-trained LLMs are zero-shot batch-level anomaly detectors. That is, without extra distribution-specific model fitting, they can discover hidden outliers in a batch of data, demonstrating their ability to identify low-density data regions. For LLMs that are not well aligned with anomaly detection and frequently output factual errors, we apply simple yet effective data-generating processes to simulate synthetic batch-level anomaly detection datasets and propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies. Experiments on a large anomaly detection benchmark (ODDS) showcase i) GPT-4 has on-par performance with the state-of-the-art transductive learning-based anomaly detection methods and ii) the efficacy of our synthetic dataset and fine-tuning strategy in aligning LLMs to this task.


Zero-Shot Anomaly Detection via Batch Normalization

arXiv.org Machine Learning

Anomaly detection (AD) plays a crucial role in many safety-critical application domains. The challenge of adapting an anomaly detector to drift in the normal data distribution, especially when no training data is available for the "new normal", has led to the development of zero-shot AD techniques. In this paper, we propose a simple yet effective method called Adaptive Centered Representations (ACR) for zero-shot batch-level AD. Our approach trains off-the-shelf deep anomaly detectors (such as deep SVDD) to adapt to a set of inter-related training data distributions in combination with batch normalization, enabling automatic zero-shot generalization for unseen AD tasks. This simple recipe, batch normalization plus meta-training, is a highly effective and versatile tool. Our theoretical results guarantee the zero-shot generalization for unseen AD tasks; our empirical results demonstrate the first zero-shot AD results for tabular data and outperform existing methods in zero-shot anomaly detection and segmentation on image data from specialized domains.


Model Selection of Anomaly Detectors in the Absence of Labeled Validation Data

arXiv.org Artificial Intelligence

Anomaly detection requires detecting abnormal samples in large unlabeled datasets. While progress in deep learning and the advent of foundation models has produced powerful unsupervised anomaly detection methods, their deployment in practice is often hindered by the lack of labeled data -- without it, the detection accuracy of an anomaly detector cannot be evaluated reliably. In this work, we propose a general-purpose framework for evaluating image-based anomaly detectors with synthetically generated validation data. Our method assumes access to a small support set of normal images which are processed with a pre-trained diffusion model (our proposed method requires no training or fine-tuning) to produce synthetic anomalies. When mixed with normal samples from the support set, the synthetic anomalies create detection tasks that compose a validation framework for anomaly detection evaluation and model selection. In an extensive empirical study, ranging from natural images to industrial applications, we find that our synthetic validation framework selects the same models and hyper-parameters as selection with a ground-truth validation set. In addition, we find that prompts selected by our method for CLIP-based anomaly detection outperforms all other prompt selection strategies, and leads to the overall best detection accuracy, even on the challenging MVTec-AD dataset.


Deep Anomaly Detection under Labeling Budget Constraints

arXiv.org Artificial Intelligence

Selecting informative data points for expert feedback can significantly improve the performance of anomaly detection (AD) in various contexts, such as medical diagnostics or fraud detection. In this paper, we determine a set of theoretical conditions under which anomaly scores generalize from labeled queries to unlabeled data. Motivated by these results, we propose a data labeling strategy with optimal data coverage under labeling budget constraints. In addition, we propose a new learning framework for semi-supervised AD. Extensive experiments on image, tabular, and video data sets show that our approach results in state-of-the-art semi-supervised AD performance under labeling budget constraints.


Variational Beam Search for Online Learning with Distribution Shifts

arXiv.org Machine Learning

We consider the problem of online learning in the presence of sudden distribution shifts as frequently encountered in applications such as autonomous navigation. Distribution shifts require constant performance monitoring and re-training. They may also be hard to detect and can lead to a slow but steady degradation in model performance. To address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion. The approach uses beam search over multiple change point hypotheses to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.