Lewandowski, Basile
MPQ-Diff: Mixed Precision Quantization for Diffusion Models
Maruzzelli, Rocco Manz, Lewandowski, Basile, Chen, Lydia Y.
Diffusion models (DMs) generate remarkable high quality images via the stochastic denoising process, which unfortunately incurs high sampling time. Post-quantizing the trained diffusion models in fixed bit-widths, e.g., 4 bits on weights and 8 bits on activation, is shown effective in accelerating sampling time while maintaining the image quality. Motivated by the observation that the cross-layer dependency of DMs vary across layers and sampling steps, we propose a mixed precision quantization scheme, MPQ-Diff, which allocates different bit-width to the weights and activation of the layers. We advocate to use the cross-layer correlation of a given layer, termed network orthogonality metric, as a proxy to measure the relative importance of a layer per sampling step. We further adopt a uniform sampling scheme to avoid the excessive profiling overhead of estimating orthogonality across all time steps. We evaluate the proposed mixed-precision on LSUN and ImageNet, showing a significant improvement in FID from 65.73 to 15.39, and 52.66 to 14.93, compared to their fixed precision quantization, respectively.
Memory Efficient Mixed-Precision Optimizers
Lewandowski, Basile, Kosson, Atli
Traditional optimization methods rely on the use of single-precision floating point arithmetic, which can be costly in terms of memory size and computing power. However, mixed precision optimization techniques leverage the use of both single and half-precision floating point arithmetic to reduce memory requirements while maintaining model accuracy. We provide here an algorithm to further reduce memory usage during the training of a model by getting rid of the floating point copy of the parameters, virtually keeping only half-precision numbers. We also explore the benefits of getting rid of the gradient's value by executing the optimizer step during the back-propagation. In practice, we achieve up to 25% lower peak memory use and 15% faster training while maintaining the same level of accuracy.