Goto

Collaborating Authors

 Levin, Anat


Blind Motion Deblurring Using Image Statistics

Neural Information Processing Systems

We address the problem of blind motion deblurring from a single image, caused by a few moving objects. In such situations only part of the image may be blurred, and the scene consists of layers blurred in different degrees. Most of of existing blind deconvolution research concentrates at recovering a single blurring kernel for the entire image. However, in the case of different motions, the blur cannot be modeled with a single kernel, and trying to deconvolve the entire image with the same kernel will cause serious artifacts. Thus, the task of deblurring needs to involve segmentation of the image into regions with different blurs.


Ranking with Large Margin Principle: Two Approaches

Neural Information Processing Systems

We discuss the problem of ranking k instances with the use of a "large margin" principle. We introduce two main approaches: the first is the "fixed margin" policy in which the margin of the closest neighboring classes is being maximized - which turns out to be a direct generalization of SVM to ranking learning. The second approach allows for k - 1 different margins where the sum of margins is maximized. This approach is shown to reduce to lI-SVM when the number of classes k 2. Both approaches are optimal in size of 21 where I is the total number of training examples. Experiments performed on visual classification and "collaborative filtering" show that both approaches outperform existing ordinal regression algorithms applied for ranking and multi-class SVM applied to general multi-class classification.


Ranking with Large Margin Principle: Two Approaches

Neural Information Processing Systems

We discuss the problem of ranking k instances with the use of a "large margin" principle. We introduce two main approaches: the first is the "fixed margin" policy in which the margin of the closest neighboring classes is being maximized - which turns out to be a direct generalization ofSVM to ranking learning.