Leung, Henry
Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
Zhang, Muhua, Ma, Lei, Wu, Ying, Shen, Kai, Sun, Yongkui, Leung, Henry
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
Navigating High-Degree Heterogeneity: Federated Learning in Aerial and Space Networks
Dong, Fan, Leung, Henry, Drew, Steve
Federated learning offers a compelling solution to the challenges of networking and data privacy within aerial and space networks by utilizing vast private edge data and computing capabilities accessible through drones, balloons, and satellites. While current research has focused on optimizing the learning process, computing efficiency, and minimizing communication overhead, the issue of heterogeneity and class imbalance remains a significant barrier to rapid model convergence. In our study, we explore the influence of heterogeneity on class imbalance, which diminishes performance in ASN-based federated learning. We illustrate the correlation between heterogeneity and class imbalance within grouped data and show how constraints such as battery life exacerbate the class imbalance challenge. Our findings indicate that ASN-based FL faces heightened class imbalance issues even with similar levels of heterogeneity compared to other scenarios. Finally, we analyze the impact of varying degrees of heterogeneity on FL training and evaluate the efficacy of current state-of-the-art algorithms under these conditions. Our results reveal that the heterogeneity challenge is more pronounced in ASN-based federated learning and that prevailing algorithms often fail to effectively address high levels of heterogeneity.
FedGreen: Carbon-aware Federated Learning with Model Size Adaptation
Abbasi, Ali, Dong, Fan, Wang, Xin, Leung, Henry, Zhou, Jiayu, Drew, Steve
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients, and this work investigates the carbon emission of the FL process. Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources, offering opportunities to reduce carbon emissions by training local models with adaptive computations and communications. In this paper, we propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients based on their carbon profiles and locations using ordered dropout as a model compression technique. We theoretically analyze the trade-offs between the produced carbon emissions and the convergence accuracy, considering the carbon intensity discrepancy across countries to choose the parameters optimally. Empirical studies show that FedGreen can substantially reduce the carbon footprints of FL compared to the state-of-the-art while maintaining competitive model accuracy.
WeiAvg: Federated Learning Model Aggregation Promoting Data Diversity
Dong, Fan, Abbasi, Ali, Drew, Steve, Leung, Henry, Wang, Xin, Zhou, Jiayu
Federated learning provides a promising privacy-preserving way for utilizing large-scale private edge data from massive Internet-of-Things (IoT) devices. While existing research extensively studied optimizing the learning process, computing efficiency, and communication overhead, one important and often overlooked aspect is that participants contribute predictive knowledge from their data, impacting the quality of the federated models learned. While FedAvg treats each client equally and assigns weight solely based on the number of samples, the diversity of samples on each client could greatly affect the local update performance and the final aggregated model. In this paper, we propose a novel approach to address this issue by introducing a Weighted Averaging (WeiAvg) framework that emphasizes updates from high-diversity clients and diminishes the influence of those from low-diversity clients. Specifically, we introduced a projection-based approximation method to estimate the diversity of client data, instead of the computation of an entropy. We use the approximation because the locally computed entropy may not be transmitted due to excess privacy risk. Extensive experimental results show that WeiAvg converges faster and achieves higher accuracy than the original FedAvg algorithm and FedProx.
An Uncertainty-aware Loss Function for Training Neural Networks with Calibrated Predictions
Shamsi, Afshar, Asgharnezhad, Hamzeh, Tajally, AmirReza, Nahavandi, Saeid, Leung, Henry
Uncertainty quantification of machine learning and deep learning methods plays an important role in enhancing trust to the obtained result. In recent years, a numerous number of uncertainty quantification methods have been introduced. Monte Carlo dropout (MC-Dropout) is one of the most well-known techniques to quantify uncertainty in deep learning methods. In this study, we propose two new loss functions by combining cross entropy with Expected Calibration Error (ECE) and Predictive Entropy (PE). The obtained results clearly show that the new proposed loss functions lead to having a calibrated MC-Dropout method. Our results confirmed the great impact of the new hybrid loss functions for minimising the overlap between the distributions of uncertainty estimates for correct and incorrect predictions without sacrificing the model's overall performance.
On the Philosophical, Cognitive and Mathematical Foundations of Symbiotic Autonomous Systems (SAS)
Wang, Yingxu, Karray, Fakhri, Kwong, Sam, Plataniotis, Konstantinos N., Leung, Henry, Hou, Ming, Tunstel, Edward, Rudas, Imre J., Trajkovic, Ljiljana, Kaynak, Okyay, Kacprzyk, Janusz, Zhou, Mengchu, Smith, Michael H., Chen, Philip, Patel, Shushma
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence enabled by coherent symbiosis of human-machine interactions in hybrid societies. Basic research in the emerging field of SAS has triggered advanced general AI technologies functioning without human intervention or hybrid symbiotic systems synergizing humans and intelligent machines into coherent cognitive systems. This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences. SAS are characterized by the composition of autonomous and symbiotic systems that adopt bio-brain-social-inspired and heterogeneously synergized structures and autonomous behaviors. This paper explores their cognitive and mathematical foundations. The challenge to seamless human-machine interactions in a hybrid environment is addressed. SAS-based collective intelligence is explored in order to augment human capability by autonomous machine intelligence towards the next generation of general AI, autonomous computers, and trustworthy mission-critical intelligent systems. Emerging paradigms and engineering applications of SAS are elaborated via an autonomous knowledge learning system that symbiotically works between humans and cognitive robots.