Goto

Collaborating Authors

 Leslie Pack Kaelbling


Neural Relational Inference with Fast Modular Meta-learning

Neural Information Processing Systems

Graph neural networks (GNNs) are effective models for many dynamical systems consisting of entities and relations. Although most GNN applications assume a single type of entity and relation, many situations involve multiple types of interactions. Relational inference is the problem of inferring these interactions and learning the dynamics from observational data. We frame relational inference as a modular meta-learning problem, where neural modules are trained to be composed in different ways to solve many tasks. This meta-learning framework allows us to implicitly encode time invariance and infer relations in context of one another rather than independently, which increases inference capacity. Framing inference as the inner-loop optimization of meta-learning leads to a model-based approach that is more data-efficient and capable of estimating the state of entities that we do not observe directly, but whose existence can be inferred from their effect on observed entities. To address the large search space of graph neural network compositions, we meta-learn a proposal function that speeds up the inner-loop simulated annealing search within the modular meta-learning algorithm, providing two orders of magnitude increase in the size of problems that can be addressed.


Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

Neural Information Processing Systems

Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theoretical guarantees in Bayesian optimization are often regrettably compromised in practice because of unknown parameters in the prior. In this paper, we adopt a variant of empirical Bayes and show that, by estimating the Gaussian process prior from offline data sampled from the same prior and constructing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement achieve a near-zero regret bound, which decreases to a constant proportional to the observational noise as the number of offline data and the number of online evaluations increase. Empirically, we have verified our approach on challenging simulated robotic problems featuring task and motion planning.


Neural Relational Inference with Fast Modular Meta-learning

Neural Information Processing Systems

Graph neural networks (GNNs) are effective models for many dynamical systems consisting of entities and relations. Although most GNN applications assume a single type of entity and relation, many situations involve multiple types of interactions. Relational inference is the problem of inferring these interactions and learning the dynamics from observational data. We frame relational inference as a modular meta-learning problem, where neural modules are trained to be composed in different ways to solve many tasks. This meta-learning framework allows us to implicitly encode time invariance and infer relations in context of one another rather than independently, which increases inference capacity. Framing inference as the inner-loop optimization of meta-learning leads to a model-based approach that is more data-efficient and capable of estimating the state of entities that we do not observe directly, but whose existence can be inferred from their effect on observed entities. To address the large search space of graph neural network compositions, we meta-learn a proposal function that speeds up the inner-loop simulated annealing search within the modular meta-learning algorithm, providing two orders of magnitude increase in the size of problems that can be addressed.


Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

Neural Information Processing Systems

Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theoretical guarantees in Bayesian optimization are often regrettably compromised in practice because of unknown parameters in the prior. In this paper, we adopt a variant of empirical Bayes and show that, by estimating the Gaussian process prior from offline data sampled from the same prior and constructing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement achieve a near-zero regret bound, which decreases to a constant proportional to the observational noise as the number of offline data and the number of online evaluations increase. Empirically, we have verified our approach on challenging simulated robotic problems featuring task and motion planning.