Lerer, Adam
OpenAI o1 System Card
OpenAI, null, :, null, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiรฑonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody Y., Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
GPT-4o System Card
OpenAI, null, :, null, Hurst, Aaron, Lerer, Adam, Goucher, Adam P., Perelman, Adam, Ramesh, Aditya, Clark, Aidan, Ostrow, AJ, Welihinda, Akila, Hayes, Alan, Radford, Alec, Mฤ dry, Aleksander, Baker-Whitcomb, Alex, Beutel, Alex, Borzunov, Alex, Carney, Alex, Chow, Alex, Kirillov, Alex, Nichol, Alex, Paino, Alex, Renzin, Alex, Passos, Alex Tachard, Kirillov, Alexander, Christakis, Alexi, Conneau, Alexis, Kamali, Ali, Jabri, Allan, Moyer, Allison, Tam, Allison, Crookes, Amadou, Tootoochian, Amin, Tootoonchian, Amin, Kumar, Ananya, Vallone, Andrea, Karpathy, Andrej, Braunstein, Andrew, Cann, Andrew, Codispoti, Andrew, Galu, Andrew, Kondrich, Andrew, Tulloch, Andrew, Mishchenko, Andrey, Baek, Angela, Jiang, Angela, Pelisse, Antoine, Woodford, Antonia, Gosalia, Anuj, Dhar, Arka, Pantuliano, Ashley, Nayak, Avi, Oliver, Avital, Zoph, Barret, Ghorbani, Behrooz, Leimberger, Ben, Rossen, Ben, Sokolowsky, Ben, Wang, Ben, Zweig, Benjamin, Hoover, Beth, Samic, Blake, McGrew, Bob, Spero, Bobby, Giertler, Bogo, Cheng, Bowen, Lightcap, Brad, Walkin, Brandon, Quinn, Brendan, Guarraci, Brian, Hsu, Brian, Kellogg, Bright, Eastman, Brydon, Lugaresi, Camillo, Wainwright, Carroll, Bassin, Cary, Hudson, Cary, Chu, Casey, Nelson, Chad, Li, Chak, Shern, Chan Jun, Conger, Channing, Barette, Charlotte, Voss, Chelsea, Ding, Chen, Lu, Cheng, Zhang, Chong, Beaumont, Chris, Hallacy, Chris, Koch, Chris, Gibson, Christian, Kim, Christina, Choi, Christine, McLeavey, Christine, Hesse, Christopher, Fischer, Claudia, Winter, Clemens, Czarnecki, Coley, Jarvis, Colin, Wei, Colin, Koumouzelis, Constantin, Sherburn, Dane, Kappler, Daniel, Levin, Daniel, Levy, Daniel, Carr, David, Farhi, David, Mely, David, Robinson, David, Sasaki, David, Jin, Denny, Valladares, Dev, Tsipras, Dimitris, Li, Doug, Nguyen, Duc Phong, Findlay, Duncan, Oiwoh, Edede, Wong, Edmund, Asdar, Ehsan, Proehl, Elizabeth, Yang, Elizabeth, Antonow, Eric, Kramer, Eric, Peterson, Eric, Sigler, Eric, Wallace, Eric, Brevdo, Eugene, Mays, Evan, Khorasani, Farzad, Such, Felipe Petroski, Raso, Filippo, Zhang, Francis, von Lohmann, Fred, Sulit, Freddie, Goh, Gabriel, Oden, Gene, Salmon, Geoff, Starace, Giulio, Brockman, Greg, Salman, Hadi, Bao, Haiming, Hu, Haitang, Wong, Hannah, Wang, Haoyu, Schmidt, Heather, Whitney, Heather, Jun, Heewoo, Kirchner, Hendrik, Pinto, Henrique Ponde de Oliveira, Ren, Hongyu, Chang, Huiwen, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, O'Connell, Ian, Osband, Ian, Silber, Ian, Sohl, Ian, Okuyucu, Ibrahim, Lan, Ikai, Kostrikov, Ilya, Sutskever, Ilya, Kanitscheider, Ingmar, Gulrajani, Ishaan, Coxon, Jacob, Menick, Jacob, Pachocki, Jakub, Aung, James, Betker, James, Crooks, James, Lennon, James, Kiros, Jamie, Leike, Jan, Park, Jane, Kwon, Jason, Phang, Jason, Teplitz, Jason, Wei, Jason, Wolfe, Jason, Chen, Jay, Harris, Jeff, Varavva, Jenia, Lee, Jessica Gan, Shieh, Jessica, Lin, Ji, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Jang, Joanne, Candela, Joaquin Quinonero, Beutler, Joe, Landers, Joe, Parish, Joel, Heidecke, Johannes, Schulman, John, Lachman, Jonathan, McKay, Jonathan, Uesato, Jonathan, Ward, Jonathan, Kim, Jong Wook, Huizinga, Joost, Sitkin, Jordan, Kraaijeveld, Jos, Gross, Josh, Kaplan, Josh, Snyder, Josh, Achiam, Joshua, Jiao, Joy, Lee, Joyce, Zhuang, Juntang, Harriman, Justyn, Fricke, Kai, Hayashi, Kai, Singhal, Karan, Shi, Katy, Karthik, Kavin, Wood, Kayla, Rimbach, Kendra, Hsu, Kenny, Nguyen, Kenny, Gu-Lemberg, Keren, Button, Kevin, Liu, Kevin, Howe, Kiel, Muthukumar, Krithika, Luther, Kyle, Ahmad, Lama, Kai, Larry, Itow, Lauren, Workman, Lauren, Pathak, Leher, Chen, Leo, Jing, Li, Guy, Lia, Fedus, Liam, Zhou, Liang, Mamitsuka, Lien, Weng, Lilian, McCallum, Lindsay, Held, Lindsey, Ouyang, Long, Feuvrier, Louis, Zhang, Lu, Kondraciuk, Lukas, Kaiser, Lukasz, Hewitt, Luke, Metz, Luke, Doshi, Lyric, Aflak, Mada, Simens, Maddie, Boyd, Madelaine, Thompson, Madeleine, Dukhan, Marat, Chen, Mark, Gray, Mark, Hudnall, Mark, Zhang, Marvin, Aljubeh, Marwan, Litwin, Mateusz, Zeng, Matthew, Johnson, Max, Shetty, Maya, Gupta, Mayank, Shah, Meghan, Yatbaz, Mehmet, Yang, Meng Jia, Zhong, Mengchao, Glaese, Mia, Chen, Mianna, Janner, Michael, Lampe, Michael, Petrov, Michael, Wu, Michael, Wang, Michele, Fradin, Michelle, Pokrass, Michelle, Castro, Miguel, de Castro, Miguel Oom Temudo, Pavlov, Mikhail, Brundage, Miles, Wang, Miles, Khan, Minal, Murati, Mira, Bavarian, Mo, Lin, Molly, Yesildal, Murat, Soto, Nacho, Gimelshein, Natalia, Cone, Natalie, Staudacher, Natalie, Summers, Natalie, LaFontaine, Natan, Chowdhury, Neil, Ryder, Nick, Stathas, Nick, Turley, Nick, Tezak, Nik, Felix, Niko, Kudige, Nithanth, Keskar, Nitish, Deutsch, Noah, Bundick, Noel, Puckett, Nora, Nachum, Ofir, Okelola, Ola, Boiko, Oleg, Murk, Oleg, Jaffe, Oliver, Watkins, Olivia, Godement, Olivier, Campbell-Moore, Owen, Chao, Patrick, McMillan, Paul, Belov, Pavel, Su, Peng, Bak, Peter, Bakkum, Peter, Deng, Peter, Dolan, Peter, Hoeschele, Peter, Welinder, Peter, Tillet, Phil, Pronin, Philip, Tillet, Philippe, Dhariwal, Prafulla, Yuan, Qiming, Dias, Rachel, Lim, Rachel, Arora, Rahul, Troll, Rajan, Lin, Randall, Lopes, Rapha Gontijo, Puri, Raul, Miyara, Reah, Leike, Reimar, Gaubert, Renaud, Zamani, Reza, Wang, Ricky, Donnelly, Rob, Honsby, Rob, Smith, Rocky, Sahai, Rohan, Ramchandani, Rohit, Huet, Romain, Carmichael, Rory, Zellers, Rowan, Chen, Roy, Chen, Ruby, Nigmatullin, Ruslan, Cheu, Ryan, Jain, Saachi, Altman, Sam, Schoenholz, Sam, Toizer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Culver, Sara, Ethersmith, Scott, Gray, Scott, Grove, Sean, Metzger, Sean, Hermani, Shamez, Jain, Shantanu, Zhao, Shengjia, Wu, Sherwin, Jomoto, Shino, Wu, Shirong, Shuaiqi, null, Xia, null, Phene, Sonia, Papay, Spencer, Narayanan, Srinivas, Coffey, Steve, Lee, Steve, Hall, Stewart, Balaji, Suchir, Broda, Tal, Stramer, Tal, Xu, Tao, Gogineni, Tarun, Christianson, Taya, Sanders, Ted, Patwardhan, Tejal, Cunninghman, Thomas, Degry, Thomas, Dimson, Thomas, Raoux, Thomas, Shadwell, Thomas, Zheng, Tianhao, Underwood, Todd, Markov, Todor, Sherbakov, Toki, Rubin, Tom, Stasi, Tom, Kaftan, Tomer, Heywood, Tristan, Peterson, Troy, Walters, Tyce, Eloundou, Tyna, Qi, Valerie, Moeller, Veit, Monaco, Vinnie, Kuo, Vishal, Fomenko, Vlad, Chang, Wayne, Zheng, Weiyi, Zhou, Wenda, Manassra, Wesam, Sheu, Will, Zaremba, Wojciech, Patil, Yash, Qian, Yilei, Kim, Yongjik, Cheng, Youlong, Zhang, Yu, He, Yuchen, Zhang, Yuchen, Jin, Yujia, Dai, Yunxing, Malkov, Yury
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Attention Sorting Combats Recency Bias In Long Context Language Models
Peysakhovich, Alexander, Lerer, Adam
Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation.
Modeling Strong and Human-Like Gameplay with KL-Regularized Search
Jacob, Athul Paul, Wu, David J., Farina, Gabriele, Lerer, Adam, Bakhtin, Anton, Andreas, Jacob, Brown, Noam
We consider the task of building strong but human-like policies in multi-agent decision-making problems, given examples of human behavior. Imitation learning is effective at predicting human actions but may not match the strength of expert humans, while self-play learning and search techniques (e.g. AlphaZero) lead to strong performance but may produce policies that are difficult for humans to understand and coordinate with. We show in chess and Go that regularizing search policies based on the KL divergence from an imitation-learned policy by applying Monte Carlo tree search produces policies that have higher human prediction accuracy and are stronger than the imitation policy. We then introduce a novel regret minimization algorithm that is regularized based on the KL divergence from an imitation-learned policy, and show that applying this algorithm to no-press Diplomacy yields a policy that maintains the same human prediction accuracy as imitation learning while being substantially stronger.
No-Press Diplomacy from Scratch
Bakhtin, Anton, Wu, David, Lerer, Adam, Brown, Noam
Prior AI successes in complex games have largely focused on settings with at most hundreds of actions at each decision point. In contrast, Diplomacy is a game with more than 10^20 possible actions per turn. Previous attempts to address games with large branching factors, such as Diplomacy, StarCraft, and Dota, used human data to bootstrap the policy or used handcrafted reward shaping. In this paper, we describe an algorithm for action exploration and equilibrium approximation in games with combinatorial action spaces. This algorithm simultaneously performs value iteration while learning a policy proposal network. A double oracle step is used to explore additional actions to add to the policy proposals. At each state, the target state value and policy for the model training are computed via an equilibrium search procedure. Using this algorithm, we train an agent, DORA, completely from scratch for a popular two-player variant of Diplomacy and show that it achieves superhuman performance. Additionally, we extend our methods to full-scale no-press Diplomacy and for the first time train an agent from scratch with no human data. We present evidence that this agent plays a strategy that is incompatible with human-data bootstrapped agents. This presents the first strong evidence of multiple equilibria in Diplomacy and suggests that self play alone may be insufficient for achieving superhuman performance in Diplomacy.
Learned Belief Search: Efficiently Improving Policies in Partially Observable Settings
Hu, Hengyuan, Lerer, Adam, Brown, Noam, Foerster, Jakob
Search is an important tool for computing effective policies in single- and multi-agent environments, and has been crucial for achieving superhuman performance in several benchmark fully and partially observable games. However, one major limitation of prior search approaches for partially observable environments is that the computational cost scales poorly with the amount of hidden information. In this paper we present \emph{Learned Belief Search} (LBS), a computationally efficient search procedure for partially observable environments. Rather than maintaining an exact belief distribution, LBS uses an approximate auto-regressive counterfactual belief that is learned as a supervised task. In multi-agent settings, LBS uses a novel public-private model architecture for underlying policies in order to efficiently evaluate these policies during rollouts. In the benchmark domain of Hanabi, LBS can obtain 55% ~ 91% of the benefit of exact search while reducing compute requirements by $35.8 \times$ ~ $4.6 \times$, allowing it to scale to larger settings that were inaccessible to previous search methods.
Off-Belief Learning
Hu, Hengyuan, Lerer, Adam, Cui, Brandon, Pineda, Luis, Wu, David, Brown, Noam, Foerster, Jakob
The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and rely on multi-step counterfactual reasoning based on assumptions about other agents' actions and thus fail when paired with humans or independently trained agents. In contrast, no current methods can learn optimal policies that are fully grounded, i.e., do not rely on counterfactual information from observing other agents' actions. To address this, we present off-belief learning} (OBL): at each time step OBL agents assume that all past actions were taken by a given, fixed policy ($\pi_0$), but that future actions will be taken by an optimal policy under these same assumptions. When $\pi_0$ is uniform random, OBL learns the optimal grounded policy. OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next. This introduces counterfactual reasoning in a controlled manner. Unlike independent RL which may converge to any equilibrium policy, OBL converges to a unique policy, making it more suitable for zero-shot coordination. OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a simple toy-setting and the benchmark human-AI/zero-shot coordination problem Hanabi.
Human-Level Performance in No-Press Diplomacy via Equilibrium Search
Gray, Jonathan, Lerer, Adam, Bakhtin, Anton, Brown, Noam
Prior AI breakthroughs in complex games have focused on either the purely adversarial or purely cooperative settings. In contrast, Diplomacy is a game of shifting alliances that involves both cooperation and competition. For this reason, Diplomacy has proven to be a formidable research challenge. In this paper we describe an agent for the no-press variant of Diplomacy that combines supervised learning on human data with one-step lookahead search via external regret minimization. External regret minimization techniques have been behind previous AI successes in adversarial games, most notably poker, but have not previously been shown to be successful in large-scale games involving cooperation. We show that our agent greatly exceeds the performance of past no-press Diplomacy bots, is unexploitable by expert humans, and achieves a rank of 23 out of 1,128 human players when playing anonymous games on a popular Diplomacy website. A primary goal for AI research is to develop agents that can act optimally in real-world multi-agent interactions (i.e., games). However, previous large-scale game AI results have focused on either purely competitive or purely cooperative settings. In contrast, real-world games, such as business negotiations, politics, and traffic navigation, involve a far more complex mixture of cooperation and competition. In such settings, the theoretical grounding for the techniques used in previous AI breakthroughs falls apart. In this paper we augment neural policies trained through imitation learning with regret minimization search techniques, and evaluate on the benchmark game of no-press Diplomacy.
Combining Deep Reinforcement Learning and Search for Imperfect-Information Games
Brown, Noam, Bakhtin, Anton, Lerer, Adam, Gong, Qucheng
The combination of deep reinforcement learning and search at both training and test time is a powerful paradigm that has led to a number of a successes in single-agent settings and perfect-information games, best exemplified by the success of AlphaZero. However, algorithms of this form have been unable to cope with imperfect-information games. This paper presents ReBeL, a general framework for self-play reinforcement learning and search for imperfect-information games. In the simpler setting of perfect-information games, ReBeL reduces to an algorithm similar to AlphaZero. Results show ReBeL leads to low exploitability in benchmark imperfect-information games and achieves superhuman performance in heads-up no-limit Texas hold'em poker, while using far less domain knowledge than any prior poker AI. We also prove that ReBeL converges to a Nash equilibrium in two-player zero-sum games in tabular settings.
DREAM: Deep Regret minimization with Advantage baselines and Model-free learning
Steinberger, Eric, Lerer, Adam, Brown, Noam
We introduce DREAM, a deep reinforcement learning algorithm that finds optimal strategies in imperfect-information games with multiple agents. Formally, DREAM converges to a Nash Equilibrium in two-player zero-sum games and to an extensive-form coarse correlated equilibrium in all other games. Our primary innovation is an effective algorithm that, in contrast to other regret-based deep learning algorithms, does not require access to a perfect simulator of the game to achieve good performance. We show that DREAM empirically achieves state-of-the-art performance among model-free algorithms in popular benchmark games, and is even competitive with algorithms that do use a perfect simulator.