Leonardi, Stefano
Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
Amanatidis, Georgios, Fusco, Federico, Lazos, Philip, Leonardi, Stefano, Reiffenhäuser, Rebecca
Constrained submodular maximization is a fundamental problem at the heart of discrete optimization. The reason for this is as simple as it is clear: submodular functions capture the notion of diminishing returns present in a wide variety of real-world settings. Consequently to its striking importance and coinciding NP-hardness [20], extensive research has been conducted on submodular maximization since the seventies (e.g., [15, 42]), with focus lately shifting towards handling the massive datasets emerging in modern applications. With a wide variety of possible constraints, often regarding cardinality, independence in a matroid, or knapsacktype restrictions, the number of applications is vast. To name just a few, there are recent works on feature selection in machine learning [13, 14, 32], influence maximization in viral marketing [2, 31], and data summarization [43, 38, 45]. Many of these applications have non-monotone submodular objectives, meaning that adding an element to an existing set might actually decrease its value. Two such examples are discussed in detail in Section 5. This work was supported by the ERC Advanced Grant 788893 AMDROMA "Algorithmic and Mechanism Design Research in Online Markets" and the MIUR PRIN project ALGADIMAR "Algorithms, Games, and Digital Markets."
Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with Near-optimal Adaptive Complexity
Amanatidis, Georgios, Fusco, Federico, Lazos, Philip, Leonardi, Stefano, Spaccamela, Alberto Marchetti, Reiffenhäuser, Rebecca
Submodular maximization is a classic algorithmic problem with multiple applications in data mining and machine learning; there, the growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the adaptive complexity, which captures the number of sequential rounds of parallel computation needed by an algorithm to terminate. In this work we obtain the first constant factor approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint with near-optimal $O(\log n)$ adaptive complexity. Low adaptivity by itself, however, is not enough: a crucial feature to account for is represented by the total number of function evaluations (or value queries). Our algorithm asks $\tilde{O}(n^2)$ value queries, but can be modified to run with only $\tilde{O}(n)$ instead, while retaining a low adaptive complexity of $O(\log^2n)$. Besides the above improvement in adaptivity, this is also the first combinatorial approach with sublinear adaptive complexity for the problem and yields algorithms comparable to the state-of-the-art even for the special cases of cardinality constraints or monotone objectives.
The Role of Transparency in Repeated First-Price Auctions with Unknown Valuations
Cesa-Bianchi, Nicolò, Cesari, Tommaso, Colomboni, Roberto, Fusco, Federico, Leonardi, Stefano
We study the problem of regret minimization for a single bidder in a sequence of first-price auctions where the bidder knows the item's value only if the auction is won. Our main contribution is a complete characterization, up to logarithmic factors, of the minimax regret in terms of the auction's transparency, which regulates the amount of information on competing bids disclosed by the auctioneer at the end of each auction. Our results hold under different assumptions (stochastic, adversarial, and their smoothed variants) on the environment generating the bidder's valuations and competing bids. These minimax rates reveal how the interplay between transparency and the nature of the environment affects how fast one can learn to bid optimally in first-price auctions.
Repeated Bilateral Trade Against a Smoothed Adversary
Cesa-Bianchi, Nicolò, Cesari, Tommaso, Colomboni, Roberto, Fusco, Federico, Leonardi, Stefano
We study repeated bilateral trade where an adaptive $\sigma$-smooth adversary generates the valuations of sellers and buyers. We provide a complete characterization of the regret regimes for fixed-price mechanisms under different feedback models in the two cases where the learner can post either the same or different prices to buyers and sellers. We begin by showing that the minimax regret after $T$ rounds is of order $\sqrt{T}$ in the full-feedback scenario. Under partial feedback, any algorithm that has to post the same price to buyers and sellers suffers worst-case linear regret. However, when the learner can post two different prices at each round, we design an algorithm enjoying regret of order $T^{3/4}$ ignoring log factors. We prove that this rate is optimal by presenting a surprising $T^{3/4}$ lower bound, which is the main technical contribution of the paper.
Round-Robin Beyond Additive Agents: Existence and Fairness of Approximate Equilibria
Amanatidis, Georgios, Birmpas, Georgios, Lazos, Philip, Leonardi, Stefano, Reiffenhäuser, Rebecca
Fair allocation of indivisible goods has attracted extensive attention over the last two decades, yielding numerous elegant algorithmic results and producing challenging open questions. The problem becomes much harder in the presence of strategic agents. Ideally, one would want to design truthful mechanisms that produce allocations with fairness guarantees. However, in the standard setting without monetary transfers, it is generally impossible to have truthful mechanisms that provide non-trivial fairness guarantees. Recently, Amanatidis et al. [2021] suggested the study of mechanisms that produce fair allocations in their equilibria. Specifically, when the agents have additive valuation functions, the simple Round-Robin algorithm always has pure Nash equilibria and the corresponding allocations are envy-free up to one good (EF1) with respect to the agents' true valuation functions. Following this agenda, we show that this outstanding property of the Round-Robin mechanism extends much beyond the above default assumption of additivity. In particular, we prove that for agents with cancelable valuation functions (a natural class that contains, e.g., additive and budget-additive functions), this simple mechanism always has equilibria and even its approximate equilibria correspond to approximately EF1 allocations with respect to the agents' true valuation functions. Further, we show that the approximate EF1 fairness of approximate equilibria surprisingly holds for the important class of submodular valuation functions as well, even though exact equilibria fail to exist!
Fully Dynamic Online Selection through Online Contention Resolution Schemes
Avadhanula, Vashist, Celli, Andrea, Colini-Baldeschi, Riccardo, Leonardi, Stefano, Russo, Matteo
We study fully dynamic online selection problems in an adversarial/stochastic setting that includes Bayesian online selection, prophet inequalities, posted price mechanisms, and stochastic probing problems subject to combinatorial constraints. In the classical ``incremental'' version of the problem, selected elements remain active until the end of the input sequence. On the other hand, in the fully dynamic version of the problem, elements stay active for a limited time interval, and then leave. This models, for example, the online matching of tasks to workers with task/worker-dependent working times, and sequential posted pricing of perishable goods. A successful approach to online selection problems in the adversarial setting is given by the notion of Online Contention Resolution Scheme (OCRS), that uses a priori information to formulate a linear relaxation of the underlying optimization problem, whose optimal fractional solution is rounded online for any adversarial order of the input sequence. Our main contribution is providing a general method for constructing an OCRS for fully dynamic online selection problems. Then, we show how to employ such OCRS to construct no-regret algorithms in a partial information model with semi-bandit feedback and adversarial inputs.
Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
Amanatidis, Georgios, Fusco, Federico, Lazos, Philip, Leonardi, Stefano, Reiffenhäuser, Rebecca
Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern-day applications can render existing algorithms prohibitively slow. Moreover, frequently those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a 5.83-approximation and runs in O(n log n) time, i.e., at least a factor n faster than other state-of-the-art algorithms. The versatility of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a (9 + ε)-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data.
Allocating Indivisible Goods to Strategic Agents: Pure Nash Equilibria and Fairness
Amanatidis, Georgios, Birmpas, Georgios, Fusco, Federico, Lazos, Philip, Leonardi, Stefano, Reiffenhäuser, Rebecca
We consider the problem of fairly allocating a set of indivisible goods to a set of strategic agents with additive valuation functions. We assume no monetary transfers and, therefore, a mechanism in our setting is an algorithm that takes as input the reported -- rather than the true -- values of the agents. Our main goal is to explore whether there exist mechanisms that have pure Nash equilibria for every instance and, at the same time, provide fairness guarantees for the allocations that correspond to these equilibria. We focus on two relaxations of envy-freeness, namely envy-freeness up to one good (EF1), and envy-freeness up to any good (EFX), and we positively answer the above question. In particular, we study two algorithms that are known to produce such allocations in the non-strategic setting: Round-Robin (EF1 allocations for any number of agents) and a cut-and-choose algorithm of Plaut and Roughgarden [SIAM Journal of Discrete Mathematics, 2020] (EFX allocations for two agents). For Round-Robin we show that all of its pure Nash equilibria induce allocations that are EF1 with respect to the underlying true values, while for the algorithm of Plaut and Roughgarden we show that the corresponding allocations not only are EFX but also satisfy maximin share fairness, something that is not true for this algorithm in the non-strategic setting! Further, we show that a weaker version of the latter result holds for any mechanism for two agents that always has pure Nash equilibria which all induce EFX allocations.
Humans as Path-Finders for Safe Navigation
Antonucci, Alessandro, Bevilacqua, Paolo, Leonardi, Stefano, Palopoli, Luigi, Fontanelli, Daniele
One of the most important barriers toward a widespread use of mobile robots in unstructured and human populated work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of this approach requires a high degree of robustness in locating the specific person to be followed (the leader). We propose a three phase approach to fulfil this goal: 1. identification and tracking of the person in the image space, 2. sensor fusion between camera data and laser sensors, 3. point interpolation with continuous curvature curves. The approach is described in the paper and extensively validated with experimental results.
A Regret Analysis of Bilateral Trade
Cesa-Bianchi, Nicolò, Cesari, Tommaso, Colomboni, Roberto, Fusco, Federico, Leonardi, Stefano
Bilateral trade, a fundamental topic in economics, models the problem of intermediating between two strategic agents, a seller and a buyer, willing to trade a good for which they hold private valuations. Despite the simplicity of this problem, a classical result by Myerson and Satterthwaite (1983) affirms the impossibility of designing a mechanism which is simultaneously efficient, incentive compatible, individually rational, and budget balanced. This impossibility result fostered an intense investigation of meaningful trade-offs between these desired properties. Much work has focused on approximately efficient fixed-price mechanisms, i.e., Blumrosen and Dobzinski (2014; 2016), Colini-Baldeschi et al. (2016), which have been shown to fully characterize strong budget balanced and ex-post individually rational direct revelation mechanisms. All these results, however, either assume some knowledge on the priors of the seller/buyer valuations, or a black box access to some samples of the distributions, as in D{\"u}tting et al. (2021). In this paper, we cast for the first time the bilateral trade problem in a regret minimization framework over rounds of seller/buyer interactions, with no prior knowledge on the private seller/buyer valuations. Our main contribution is a complete characterization of the regret regimes for fixed-price mechanisms with different models of feedback and private valuations, using as benchmark the best fixed price in hindsight. More precisely, we prove the following bounds on the regret: $\bullet$ $\widetilde{\Theta}(\sqrt{T})$ for full-feedback (i.e., direct revelation mechanisms); $\bullet$ $\widetilde{\Theta}(T^{2/3})$ for realistic feedback (i.e., posted-price mechanisms) and independent seller/buyer valuations with bounded densities; $\bullet$ $\Theta(T)$ for realistic feedback and seller/buyer valuations with bounded densities; $\bullet$ $\Theta(T)$ for realistic feedback and independent seller/buyer valuations; $\bullet$ $\Theta(T)$ for the adversarial setting.