Goto

Collaborating Authors

 Lengyel, Máté


Active dendrites: adaptation to spike-based communication

Neural Information Processing Systems

Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree. Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity.


Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories

Neural Information Processing Systems

Storing a new pattern in a palimpsest memory system comes at the cost of interfering with the memory traces of previously stored items. Knowing the age of a pattern thus becomes critical for recalling it faithfully. This implies that there should be a tight coupling between estimates of age, as a form of familiarity, and the neural dynamics of recollection, something which current theories omit. Using a normative model of autoassociative memory, we show that a dual memory system, consisting of two interacting modules for familiarity and recollection, has best performance for both recollection and recognition. This finding provides a new window onto actively contentious psychological and neural aspects of recognition memory.


Bayesian Active Learning for Classification and Preference Learning

arXiv.org Machine Learning

Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.


Know Thy Neighbour: A Normative Theory of Synaptic Depression

Neural Information Processing Systems

Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added noise. We suggest an alternative theory according to which short term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that one key task for a synapse is to solve the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives and prior expectations, as in a recursive filter. We show that short-term synaptic depression has canonical dynamics which closely resemble those required for optimal estimation, and that it indeed supports high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.


Hippocampal Contributions to Control: The Third Way

Neural Information Processing Systems

Recent experimental studies have focused on the specialization of different neural structures for different types of instrumental behavior. Recent theoretical work has provided normative accounts for why there should be more than one control system, and how the output of different controllers can be integrated. Two particlar controllers have been identified, one associated with a forward model and the prefrontal cortex and a second associated with computationally simpler, habitual, actor-critic methods and part of the striatum. We argue here for the normative appropriateness of an additional, but so far marginalized control system, associated with episodic memory, and involving the hippocampus and medial temporal cortices. We analyze in depth a class of simple environments to show that episodic control should be useful in a range of cases characterized by complexity and inferential noise, and most particularly at the very early stages of learning, long before habitization has set in. We interpret data on the transfer of control from the hippocampus to the striatum in the light of this hypothesis.


Hippocampal Contributions to Control: The Third Way

Neural Information Processing Systems

Recent experimental studies have focused on the specialization of different neural structures for different types of instrumental behavior.


Uncertainty, phase and oscillatory hippocampal recall

Neural Information Processing Systems

Many neural areas, notably, the hippocampus, show structured, dynamical, population behavior such as coordinated oscillations.


Bayesian model learning in human visual perception

Neural Information Processing Systems

Humans make optimal perceptual decisions in noisy and ambiguous conditions. Computations underlying such optimal behavior have been shown to rely on probabilistic inference according to generative models whose structure is usually taken to be known a priori. We argue that Bayesian model selection is ideal for inferring similar and even more complex model structures from experience. We find in experiments that humans learn subtle statistical properties of visual scenes in a completely unsupervised manner. We show that these findings are well captured by Bayesian model learning within a class of models that seek to explain observed variables by independent hidden causes.