Leng, Yicheng
Self-supervised Graph Transformer with Contrastive Learning for Brain Connectivity Analysis towards Improving Autism Detection
Leng, Yicheng, Anwar, Syed Muhammad, Rekik, Islem, He, Sen, Lee, Eung-Joo
Functional Magnetic Resonance Imaging (fMRI) provides useful insights into the brain function both during task or rest. Representing fMRI data using correlation matrices is found to be a reliable method of analyzing the inherent connectivity of the brain in the resting and active states. Graph Neural Networks (GNNs) have been widely used for brain network analysis due to their inherent explainability capability. In this work, we introduce a novel framework using contrastive self-supervised learning graph transformers, incorporating a brain network transformer encoder with random graph alterations. The proposed network leverages both contrastive learning and graph alterations to effectively train the graph transformer for autism detection. Our approach, tested on Autism Brain Imaging Data Exchange (ABIDE) data, demonstrates superior autism detection, achieving an AUROC of 82.6 and an accuracy of 74%, surpassing current state-of-the-art methods.