Goto

Collaborating Authors

 Lemm, Steven


Aggregating Classification Accuracy across Time: Application to Single Trial EEG

Neural Information Processing Systems

We present a method for binary online classification of triggered but temporally blurred events that are embedded in noisy time series in the context of online discrimination between left and right imaginary hand-movement. In particular the goal of the binary classification problem is to obtain the decision, as fast and as reliably as possible from the recorded EEG single trials. To provide a probabilistic decision at every time-point t the presented method gathers information from two distinct sequences of features across time. In order to incorporate decisions from prior time-points we suggest an appropriate weighting scheme, that emphasizes time instances, providing a higher discriminatory power between the instantaneous class distributions of each feature, where the discriminatory power is quantified in terms of the Bayes error of misclassification. The effectiveness of this procedure is verified by its successful application in the 3rd BCI competition. Disclosure of the data after the competition revealed this approach to be superior with single trial error rates as low as 10.7, 11.5 and 16.7% for the three different subjects under study.


Aggregating Classification Accuracy across Time: Application to Single Trial EEG

Neural Information Processing Systems

We present a method for binary online classification of triggered but temporally blurredevents that are embedded in noisy time series in the context of online discrimination between left and right imaginary hand-movement. In particular the goal of the binary classification problem is to obtain the decision, as fast and as reliably as possible from the recorded EEG single trials. To provide a probabilistic decision at every time-point t the presented methodgathers information from two distinct sequences of features across time. In order to incorporate decisions from prior time-points we suggest an appropriate weighting scheme, that emphasizes time instances, providing a higher discriminatory power between the instantaneous class distributions of each feature, where the discriminatory power is quantified in terms of the Bayes error of misclassification. The effectiveness of this procedure is verified by its successful application in the 3rd BCI competition. Disclosure of the data after the competition revealed this approach to be superior with single trial error rates as low as 10.7, 11.5 and 16.7% for the three different subjects under study.


A Dynamic HMM for On-line Segmentation of Sequential Data

Neural Information Processing Systems

We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-stationary time series from a dynamical system that switches between multiple operating modes. Unlike other approaches, our method processes the data incrementally and without any training of internal parameters. We use an HMM with a dynamically changing number of states and an online variant of the Viterbi algorithm that performs an unsupervised segmentation and classification of the data on-the-fly, i.e. the method is able to process incoming data in real-time. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream.


A Dynamic HMM for On-line Segmentation of Sequential Data

Neural Information Processing Systems

We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-stationary time series from a dynamical system that switches between multiple operating modes. Unlike other approaches, our method processes the data incrementally and without any training of internal parameters. We use an HMM with a dynamically changing number of states and an online variant of the Viterbi algorithm that performs an unsupervised segmentation and classification of the data on-the-fly, i.e. the method is able to process incoming data in real-time. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream.


A Dynamic HMM for On-line Segmentation of Sequential Data

Neural Information Processing Systems

We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-stationary time series from a dynamical system that switches between multiple operating modes. Unlike other approaches, ourmethod processes the data incrementally and without any training of internal parameters. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream. The usefulness of the algorithm is demonstrated by an application to a switching dynamical system. 1 Introduction Abrupt changes can occur in many different real-world systems like, for example, in speech, in climatological or industrial processes, in financial markets, and also in physiological signals (EEG/MEG).