Goto

Collaborating Authors

 Leitner, Jürgen


Deep Learning Approaches to Grasp Synthesis: A Review

arXiv.org Artificial Intelligence

Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep-learning methods have allowed rapid progress in robotic object grasping. In this systematic review, we surveyed the publications over the last decade, with a particular interest in grasping an object using all 6 degrees of freedom of the end-effector pose. Our review found four common methodologies for robotic grasping: sampling-based approaches, direct regression, reinforcement learning, and exemplar approaches. Additionally, we found two `supporting methods` around grasping that use deep-learning to support the grasping process, shape approximation, and affordances. We have distilled the publications found in this systematic review (85 papers) into ten key takeaways we consider crucial for future robotic grasping and manipulation research. An online version of the survey is available at https://rhys-newbury.github.io/projects/6dof/


Ctrl-Z: Recovering from Instability in Reinforcement Learning

arXiv.org Machine Learning

When learning behavior, training data is often generated by the learner itself; this can result in unstable training dynamics, and this problem has particularly important applications in safety-sensitive real-world control tasks such as robotics. In this work, we propose a principled and model-agnostic approach to mitigate the issue of unstable learning dynamics by maintaining a history of a reinforcement learning agent over the course of training, and reverting to the parameters of a previous agent whenever performance significantly decreases. We develop techniques for evaluating this performance through statistical hypothesis testing of continued improvement, and evaluate them on a standard suite of challenging benchmark tasks involving continuous control of simulated robots. We show improvements over state-of-the-art reinforcement learning algorithms in performance and robustness to hyperparameters, outperforming DDPG in 5 out of 6 evaluation environments and showing no decrease in performance with TD3, which is known to be relatively stable. In this way, our approach takes an important step towards increasing data efficiency and stability in training for real-world robotic applications.


Sim-to-Real Transfer of Robot Learning with Variable Length Inputs

arXiv.org Machine Learning

Current end-to-end deep Reinforcement Learning (RL) approaches require jointly learning perception, decision-making and low-level control from very sparse reward signals and high-dimensional inputs, with little capability of incorporating prior knowledge. This results in prohibitively long training times for use on real-world robotic tasks. Existing algorithms capable of extracting task-level representations from high-dimensional inputs, e.g. object detection, often produce outputs of varying lengths, restricting their use in RL methods due to the need for neural networks to have fixed length inputs. In this work, we propose a framework that combines deep sets encoding, which allows for variable-length abstract representations, with modular RL that utilizes these representations, decoupling high-level decision making from low-level control. We successfully demonstrate our approach on the robot manipulation task of object sorting, showing that this method can learn effective policies within mere minutes of highly simplified simulation. The learned policies can be directly deployed on a robot without further training, and generalize to variations of the task unseen during training.


Coordinated Heterogeneous Distributed Perception based on Latent Space Representation

arXiv.org Artificial Intelligence

Abstract-- We investigate a reinforcement approach for distributed sensing based on the latent space derived from multimodal deep generative models. Our contribution provides insights to the following benefits: Detections can be exchanged effectively between robots equipped with unimodal sensors due to a shared latent representation of information that is trained by a Variational Auto Encoder (VAE). Sensor-fusion can be applied asynchronously due to the generative feature of the VAE. Deep Q-Networks (DQNs) are trained to minimize uncertainty in latent space by coordinating robots to a Point-of- Interest (PoI) where their sensor modality can provide beneficial information about the PoI. Additionally, we show that the decrease in uncertainty can be defined as the direct reward signal for training the DQN.


Adversarial Discriminative Sim-to-real Transfer of Visuo-motor Policies

arXiv.org Artificial Intelligence

Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labelling process is often expensive or even impractical in many robotic applications. In this paper, we propose an adversarial discriminative sim-to-real transfer approach to reduce the cost of labelling real data. The effectiveness of the approach is demonstrated with modular networks in a table-top object reaching task where a 7 DoF arm is controlled in velocity mode to reach a blue cuboid in clutter through visual observations. The adversarial transfer approach reduced the labelled real data requirement by 50%. Policies can be transferred to real environments with only 93 labelled and 186 unlabelled real images. The transferred visuo-motor policies are robust to novel (not seen in training) objects in clutter and even a moving target, achieving a 97.8% success rate and 1.8 cm control accuracy.


Modular Deep Q Networks for Sim-to-real Transfer of Visuo-motor Policies

arXiv.org Artificial Intelligence

While deep learning has had significant successes in computer vision thanks to the abundance of visual data, collecting sufficiently large real-world datasets for robot learning can be costly. To increase the practicality of these techniques on real robots, we propose a modular deep reinforcement learning method capable of transferring models trained in simulation to a real-world robotic task. We introduce a bottleneck between perception and control, enabling the networks to be trained independently, but then merged and fine-tuned in an end-to-end manner to further improve hand-eye coordination. On a canonical, planar visually-guided robot reaching task a fine-tuned accuracy of 1.6 pixels is achieved, a significant improvement over naive transfer (17.5 pixels), showing the potential for more complicated and broader applications. Our method provides a technique for more efficient learning and transfer of visuo-motor policies for real robotic systems without relying entirely on large real-world robot datasets.