Goto

Collaborating Authors

 Leippold, Markus


Environmental Claim Detection

arXiv.org Artificial Intelligence

To transition to a green economy, environmental claims made by companies must be reliable, comparable, and verifiable. To analyze such claims at scale, automated methods are needed to detect them in the first place. However, there exist no datasets or models for this. Thus, this paper introduces the task of environmental claim detection. To accompany the task, we release an expert-annotated dataset and models trained on this dataset. We preview one potential application of such models: We detect environmental claims made in quarterly earning calls and find that the number of environmental claims has steadily increased since the Paris Agreement in 2015.


When Does Aggregating Multiple Skills with Multi-Task Learning Work? A Case Study in Financial NLP

arXiv.org Artificial Intelligence

Multi-task learning (MTL) aims at achieving a better model by leveraging data and knowledge from multiple tasks. However, MTL does not always work -- sometimes negative transfer occurs between tasks, especially when aggregating loosely related skills, leaving it an open question when MTL works. Previous studies show that MTL performance can be improved by algorithmic tricks. However, what tasks and skills should be included is less well explored. In this work, we conduct a case study in Financial NLP where multiple datasets exist for skills relevant to the domain, such as numeric reasoning and sentiment analysis. Due to the task difficulty and data scarcity in the Financial NLP domain, we explore when aggregating such diverse skills from multiple datasets with MTL can work. Our findings suggest that the key to MTL success lies in skill diversity, relatedness between tasks, and choice of aggregation size and shared capacity. Specifically, MTL works well when tasks are diverse but related, and when the size of the task aggregation and the shared capacity of the model are balanced to avoid overwhelming certain tasks.


chatClimate: Grounding Conversational AI in Climate Science

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have made significant progress in recent years, achieving remarkable results in question-answering tasks (QA). However, they still face two major challenges: hallucination and outdated information after the training phase. These challenges take center stage in critical domains like climate change, where obtaining accurate and up-to-date information from reliable sources in a limited time is essential and difficult. To overcome these barriers, one potential solution is to provide LLMs with access to external, scientifically accurate, and robust sources (long-term memory) to continuously update their knowledge and prevent the propagation of inaccurate, incorrect, or outdated information. In this study, we enhanced GPT-4 by integrating the information from the Sixth Assessment Report of the Intergovernmental (IPCC AR6), the most comprehensive, up-to-date, and reliable source in this domain. We present our conversational AI prototype, available at www.chatclimate.ai and demonstrate its ability to answer challenging questions accurately in three different QA scenarios: asking from 1) GPT-4, 2) chatClimate, and 3) hybrid chatClimate. The answers and their sources were evaluated by our team of IPCC authors, who used their expert knowledge to score the accuracy of the answers from 1 (very-low) to 5 (very-high). The evaluation showed that the hybrid chatClimate provided more accurate answers, highlighting the effectiveness of our solution. This approach can be easily scaled for chatbots in specific domains, enabling the delivery of reliable and accurate information.


Enhancing Large Language Models with Climate Resources

arXiv.org Artificial Intelligence

Large language models (LLMs) have significantly transformed the landscape of artificial intelligence by demonstrating their ability in generating human-like text across diverse topics. However, despite their impressive capabilities, LLMs lack recent information and often employ imprecise language, which can be detrimental in domains where accuracy is crucial, such as climate change. In this study, we make use of recent ideas to harness the potential of LLMs by viewing them as agents that access multiple sources, including databases containing recent and precise information about organizations, institutions, and companies. We demonstrate the effectiveness of our method through a prototype agent that retrieves emission data from ClimateWatch (https://www.climatewatchdata.org/) and leverages general Google search. By integrating these resources with LLMs, our approach overcomes the limitations associated with imprecise language and delivers more reliable and accurate information in the critical domain of climate change. This work paves the way for future advancements in LLMs and their application in domains where precision is of paramount importance.


ClimateBert: A Pretrained Language Model for Climate-Related Text

arXiv.org Artificial Intelligence

Over the recent years, large pretrained language models (LM) have revolutionized the field of natural language processing (NLP). However, while pretraining on general language has been shown to work very well for common language, it has been observed that niche language poses problems. In particular, climate-related texts include specific language that common LMs can not represent accurately. We argue that this shortcoming of today's LMs limits the applicability of modern NLP to the broad field of text processing of climate-related texts. As a remedy, we propose CLIMATEBERT, a transformer-based language model that is further pretrained on over 2 million paragraphs of climate-related texts, crawled from various sources such as common news, research articles, and climate reporting of companies. We find that CLIMATEBERT leads to a 48% improvement on a masked language model objective which, in turn, leads to lowering error rates by 3.57% to 35.71% for various climate-related downstream tasks like text classification, sentiment analysis, and fact-checking.


CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims

arXiv.org Artificial Intelligence

We introduce CLIMATE-FEVER, a new publicly available dataset for verification of climate change-related claims. By providing a dataset for the research community, we aim to facilitate and encourage work on improving algorithms for retrieving evidential support for climate-specific claims, addressing the underlying language understanding challenges, and ultimately help alleviate the impact of misinformation on climate change. We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet. While during this process, we could rely on the expertise of renowned climate scientists, it turned out to be no easy task. We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the \textsc{fever} framework, which we believe provides a valuable challenge for general natural language understanding. We hope that our work will mark the beginning of a new exciting long-term joint effort by the climate science and AI community.


ClimaText: A Dataset for Climate Change Topic Detection

arXiv.org Artificial Intelligence

Climate change communication in the mass media and other textual sources may affect and shape public perception. Extracting climate change information from these sources is an important task, e.g., for filtering content and e-discovery, sentiment analysis, automatic summarization, question-answering, and fact-checking. However, automating this process is a challenge, as climate change is a complex, fast-moving, and often ambiguous topic with scarce resources for popular text-based AI tasks. In this paper, we introduce \textsc{ClimaText}, a dataset for sentence-based climate change topic detection, which we make publicly available. We explore different approaches to identify the climate change topic in various text sources. We find that popular keyword-based models are not adequate for such a complex and evolving task. Context-based algorithms like BERT \cite{devlin2018bert} can detect, in addition to many trivial cases, a variety of complex and implicit topic patterns. Nevertheless, our analysis reveals a great potential for improvement in several directions, such as, e.g., capturing the discussion on indirect effects of climate change. Hence, we hope this work can serve as a good starting point for further research on this topic.