Goto

Collaborating Authors

 Leibo, Joel Z


Quantifying the Self-Interest Level of Markov Social Dilemmas

arXiv.org Artificial Intelligence

This paper introduces a novel method for estimating the self-interest level of computationally intractable Markov social dilemmas. We extend the concept of self-interest level from normal-form games to Markov games, providing a quantitative measure of the minimum reward exchange required to incentivize cooperation by aligning individual and collective interests. We demonstrate our method on three environments from the Melting Pot suite: which represent either common-pool resources or public goods. Our results show that the proposed method successfully identifies a threshold at which learning agents transition from selfish to cooperative equilibria in a Markov social dilemma. This work contributes to the fields of Cooperative AI and multiagent reinforcement learning by providing a practical tool for analysing complex, multistep social dilemmas. Our findings offer insights into how reward structures can promote or hinger cooperation in challenging multiagent scenarios, with potential applications in areas such as mechanism design.


Will Systems of LLM Agents Cooperate: An Investigation into a Social Dilemma

arXiv.org Artificial Intelligence

As autonomous agents become more prevalent, understanding their collective behaviour in strategic interactions is crucial. This study investigates the emergent cooperative tendencies of systems of Large Language Model (LLM) agents in a social dilemma. Unlike previous research where LLMs output individual actions, we prompt state-of-the-art LLMs to generate complete strategies for iterated Prisoner's Dilemma. Using evolutionary game theory, we simulate populations of agents with different strategic dispositions (aggressive, cooperative, or neutral) and observe their evolutionary dynamics. Our findings reveal that different LLMs exhibit distinct biases affecting the relative success of aggressive versus cooperative strategies. This research provides insights into the potential long-term behaviour of systems of deployed LLM-based autonomous agents and highlights the importance of carefully considering the strategic environments in which they operate.


Generalization of Reinforcement Learners with Working and Episodic Memory

arXiv.org Machine Learning

Memory is an important aspect of intelligence and plays a role in many deep reinforcement learning models. However, little progress has been made in understanding when specific memory systems help more than others and how well they generalize. The field also has yet to see a prevalent consistent and rigorous approach for evaluating agent performance on holdout data. In this paper, we aim to develop a comprehensive methodology to test different kinds of memory in an agent and assess how well the agent can apply what it learns in training to a holdout set that differs from the training set along dimensions that we suggest are relevant for evaluating memory-specific generalization. To that end, we first construct a diverse set of memory tasks that allow us to evaluate test-time generalization across multiple dimensions. Second, we develop and perform multiple ablations on an agent architecture that combines multiple memory systems, observe its baseline models, and investigate its performance against the task suite.


Learning to reinforcement learn

arXiv.org Machine Learning

In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains. However, a major limitation of such applications is their demand for massive amounts of training data. A critical present objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned RL algorithm can differ from the original one in arbitrary ways. Importantly, because it is learned, it is configured to exploit structure in the training domain. We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL. We consider prospects for extending and scaling up the approach, and also point out some potentially important implications for neuroscience.


Model-Free Episodic Control

arXiv.org Machine Learning

State of the art deep reinforcement learning algorithms take many millions of interactions to attain human-level performance. Humans, on the other hand, can very quickly exploit highly rewarding nuances of an environment upon first discovery. In the brain, such rapid learning is thought to depend on the hippocampus and its capacity for episodic memory. Here we investigate whether a simple model of hippocampal episodic control can learn to solve difficult sequential decision-making tasks. We demonstrate that it not only attains a highly rewarding strategy significantly faster than state-of-the-art deep reinforcement learning algorithms, but also achieves a higher overall reward on some of the more challenging domains.