Goto

Collaborating Authors

 Lei, Zeyang


Discovering Dialog Structure Graph for Open-Domain Dialog Generation

arXiv.org Artificial Intelligence

Learning interpretable dialog structure from human-human dialogs yields basic insights into the structure of conversation, and also provides background knowledge to facilitate dialog generation. In this paper, we conduct unsupervised discovery of dialog structure from chitchat corpora, and then leverage it to facilitate dialog generation in downstream systems. To this end, we present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure. The structure is a two-layer directed graph that contains session-level semantics in the upper-layer vertices, utterance-level semantics in the lower-layer vertices, and edges among these semantic vertices. In particular, we integrate GNN into DVAE to fine-tune utterance-level semantics for more effective recognition of session-level semantic vertex. Furthermore, to alleviate the difficulty of discovering a large number of utterance-level semantics, we design a coupling mechanism that binds each utterance-level semantic vertex with a distinct phrase to provide prior semantics. Experimental results on two benchmark corpora confirm that DVAE-GNN can discover meaningful dialog structure, and the use of dialog structure graph as background knowledge can facilitate a graph grounded conversational system to conduct coherent multi-turn dialog generation.


Investigating Capsule Networks with Dynamic Routing for Text Classification

arXiv.org Artificial Intelligence

In this study, we explore capsule networks with dynamic routing for text classification. We propose three strategies to stabilize the dynamic routing process to alleviate the disturbance of some noise capsules which may contain "background" information or have not been successfully trained. A series of experiments are conducted with capsule networks on six text classification benchmarks. Capsule networks achieve state of the art on 4 out of 6 datasets, which shows the effectiveness of capsule networks for text classification. We additionally show that capsule networks exhibit significant improvement when transfer single-label to multi-label text classification over strong baseline methods. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for text modeling.


Sentiment Lexicon Enhanced Attention-Based LSTM for Sentiment Classification

AAAI Conferences

Deep neural networks have gained great success recently for sentiment classification. However, these approaches do not fully exploit the linguistic knowledge. In this paper, we propose a novel sentiment lexicon enhanced attention-based LSTM (SLEA-LSTM) model to improve the performance of sentence-level sentiment classification. Our method successfully integrates sentiment lexicon into deep neural networks via single-head or multi-head attention mechanisms. We conduct extensive experiments on MR and SST datasets. The experimental results show that our model achieved comparable or better performance than the state-of-the-art methods.