Lei, Shanglin
Multi-Dimensional Insights: Benchmarking Real-World Personalization in Large Multimodal Models
Zhang, YiFan, Lei, Shanglin, Qiao, Runqi, GongQue, Zhuoma, Song, Xiaoshuai, Dong, Guanting, Tan, Qiuna, Wei, Zhe, Yang, Peiqing, Tian, Ye, Xue, Yadong, Wang, Xiaofei, Zhang, Honggang
The rapidly developing field of large multimodal models (LMMs) has led to the emergence of diverse models with remarkable capabilities. However, existing benchmarks fail to comprehensively, objectively and accurately evaluate whether LMMs align with the diverse needs of humans in real-world scenarios. To bridge this gap, we propose the Multi-Dimensional Insights (MDI) benchmark, which includes over 500 images covering six common scenarios of human life. Notably, the MDI-Benchmark offers two significant advantages over existing evaluations: (1) Each image is accompanied by two types of questions: simple questions to assess the model's understanding of the image, and complex questions to evaluate the model's ability to analyze and reason beyond basic content. (2) Recognizing that people of different age groups have varying needs and perspectives when faced with the same scenario, our benchmark stratifies questions into three age categories: young people, middle-aged people, and older people. This design allows for a detailed assessment of LMMs' capabilities in meeting the preferences and needs of different age groups. With MDI-Benchmark, the strong model like GPT-4o achieve 79% accuracy on age-related tasks, indicating that existing LMMs still have considerable room for improvement in addressing real-world applications. Looking ahead, we anticipate that the MDI-Benchmark will open new pathways for aligning real-world personalization in LMMs. The MDI-Benchmark data and evaluation code are available at https://mdi-benchmark.github.io/
InstructERC: Reforming Emotion Recognition in Conversation with a Retrieval Multi-task LLMs Framework
Lei, Shanglin, Dong, Guanting, Wang, Xiaoping, Wang, Keheng, Wang, Sirui
The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review.
Watch the Speakers: A Hybrid Continuous Attribution Network for Emotion Recognition in Conversation With Emotion Disentanglement
Lei, Shanglin, Wang, Xiaoping, Dong, Guanting, Li, Jiang, Liu, Yingjian
Emotion Recognition in Conversation (ERC) has attracted widespread attention in the natural language processing field due to its enormous potential for practical applications. Existing ERC methods face challenges in achieving generalization to diverse scenarios due to insufficient modeling of context, ambiguous capture of dialogue relationships and overfitting in speaker modeling. In this work, we present a Hybrid Continuous Attributive Network (HCAN) to address these issues in the perspective of emotional continuation and emotional attribution. Specifically, HCAN adopts a hybrid recurrent and attention-based module to model global emotion continuity. Then a novel Emotional Attribution Encoding (EAE) is proposed to model intra- and inter-emotional attribution for each utterance. Moreover, aiming to enhance the robustness of the model in speaker modeling and improve its performance in different scenarios, A comprehensive loss function emotional cognitive loss $\mathcal{L}_{\rm EC}$ is proposed to alleviate emotional drift and overcome the overfitting of the model to speaker modeling. Our model achieves state-of-the-art performance on three datasets, demonstrating the superiority of our work. Another extensive comparative experiments and ablation studies on three benchmarks are conducted to provided evidence to support the efficacy of each module. Further exploration of generalization ability experiments shows the plug-and-play nature of the EAE module in our method.