Lei, Jingdi
Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Zhang, Di, Li, Junxian, Lei, Jingdi, Wang, Xunzhi, Liu, Yujie, Yang, Zonglin, Li, Jiatong, Wang, Weida, Yang, Suorong, Wu, Jianbo, Ye, Peng, Ouyang, Wanli, Zhou, Dongzhan
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
Zhang, Di, Wu, Jianbo, Lei, Jingdi, Che, Tong, Li, Jiatong, Xie, Tong, Huang, Xiaoshui, Zhang, Shufei, Pavone, Marco, Li, Yuqiang, Ouyang, Wanli, Zhou, Dongzhan
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
Capturing Momentum: Tennis Match Analysis Using Machine Learning and Time Series Theory
Lei, Jingdi, Kang, Tianqi, Cao, Yuluan, Ren, Shiwei
This paper represents an analysis on the momentum of tennis match. And due to Generalization performance of it, it can be helpful in constructing a system to predict the result of sports game and analyze the performance of player based on the Technical statistics. We First use hidden markov models to predict the momentum which is defined as the performance of players. Then we use Xgboost to prove the significance of momentum. Finally we use LightGBM to evaluate the performance of our model and use SHAP feature importance ranking and weight analysis to find the key points that affect the performance of players.