Goto

Collaborating Authors

 Lei, Bo


Right Time to Learn:Promoting Generalization via Bio-inspired Spacing Effect in Knowledge Distillation

arXiv.org Artificial Intelligence

Knowledge distillation (KD) is a powerful strategy for training deep neural networks (DNNs). Although it was originally proposed to train a more compact ``student'' model from a large ``teacher'' model, many recent efforts have focused on adapting it to promote generalization of the model itself, such as online KD and self KD. % as an effective way Here, we propose an accessible and compatible strategy named Spaced KD to improve the effectiveness of both online KD and self KD, in which the student model distills knowledge from a teacher model trained with a space interval ahead. This strategy is inspired by a prominent theory named \emph{spacing effect} in biological learning and memory, positing that appropriate intervals between learning trials can significantly enhance learning performance. With both theoretical and empirical analyses, we demonstrate that the benefits of the proposed Spaced KD stem from convergence to a flatter loss landscape during stochastic gradient descent (SGD). We perform extensive experiments to validate the effectiveness of Spaced KD in improving the learning performance of DNNs (e.g., the performance gain is up to 2.31\% and 3.34\% on Tiny-ImageNet over online KD and self KD, respectively).


Learning from Pattern Completion: Self-supervised Controllable Generation

arXiv.org Artificial Intelligence

The human brain exhibits a strong ability to spontaneously associate different visual attributes of the same or similar visual scene, such as associating sketches and graffiti with real-world visual objects, usually without supervising information. In contrast, in the field of artificial intelligence, controllable generation methods like ControlNet heavily rely on annotated training datasets such as depth maps, semantic segmentation maps, and poses, which limits the method's scalability. Inspired by the neural mechanisms that may contribute to the brain's associative power, specifically the cortical modularization and hippocampal pattern completion, here we propose a self-supervised controllable generation (SCG) framework. Firstly, we introduce an equivariant constraint to promote inter-module independence and intra-module correlation in a modular autoencoder network, thereby achieving functional specialization. Subsequently, based on these specialized modules, we employ a self-supervised pattern completion approach for controllable generation training. Experimental results demonstrate that the proposed modular autoencoder effectively achieves functional specialization, including the modular processing of color, brightness, and edge detection, and exhibits brain-like features including orientation selectivity, color antagonism, and center-surround receptive fields. Through self-supervised training, associative generation capabilities spontaneously emerge in SCG, demonstrating excellent generalization ability to various tasks such as associative generation on painting, sketches, and ancient graffiti. Compared to the previous representative method ControlNet, our proposed approach not only demonstrates superior robustness in more challenging high-noise scenarios but also possesses more promising scalability potential due to its self-supervised manner.Codes are released on Github and Gitee.


Computation Rate Maximization for Wireless Powered Edge Computing With Multi-User Cooperation

arXiv.org Artificial Intelligence

The combination of mobile edge computing (MEC) and radio frequency-based wireless power transfer (WPT) presents a promising technique for providing sustainable energy supply and computing services at the network edge. This study considers a wireless-powered mobile edge computing system that includes a hybrid access point (HAP) equipped with a computing unit and multiple Internet of Things (IoT) devices. In particular, we propose a novel muti-user cooperation scheme to improve computation performance, where collaborative clusters are dynamically formed. Each collaborative cluster comprises a source device (SD) and an auxiliary device (AD), where the SD can partition the computation task into various segments for local processing, offloading to the HAP, and remote execution by the AD with the assistance of the HAP. Specifically, we aims to maximize the weighted sum computation rate (WSCR) of all the IoT devices in the network. This involves jointly optimizing collaboration, time and data allocation among multiple IoT devices and the HAP, while considering the energy causality property and the minimum data processing requirement of each device. Initially, an optimization algorithm based on the interior-point method is designed for time and data allocation. Subsequently, a priority-based iterative algorithm is developed to search for a near-optimal solution to the multi-user collaboration scheme. Finally, a deep learning-based approach is devised to further accelerate the algorithm's operation, building upon the initial two algorithms. Simulation results show that the performance of the proposed algorithms is comparable to that of the exhaustive search method, and the deep learning-based algorithm significantly reduces the execution time of the algorithm.


Communication Efficiency Optimization of Federated Learning for Computing and Network Convergence of 6G Networks

arXiv.org Artificial Intelligence

Federated learning effectively addresses issues such as data privacy by collaborating across participating devices to train global models. However, factors such as network topology and device computing power can affect its training or communication process in complex network environments. A new network architecture and paradigm with computing-measurable, perceptible, distributable, dispatchable, and manageable capabilities, computing and network convergence (CNC) of 6G networks can effectively support federated learning training and improve its communication efficiency. By guiding the participating devices' training in federated learning based on business requirements, resource load, network conditions, and arithmetic power of devices, CNC can reach this goal. In this paper, to improve the communication efficiency of federated learning in complex networks, we study the communication efficiency optimization of federated learning for computing and network convergence of 6G networks, methods that gives decisions on its training process for different network conditions and arithmetic power of participating devices in federated learning. The experiments address two architectures that exist for devices in federated learning and arrange devices to participate in training based on arithmetic power while achieving optimization of communication efficiency in the process of transferring model parameters. The results show that the method we proposed can (1) cope well with complex network situations (2) effectively balance the delay distribution of participating devices for local training (3) improve the communication efficiency during the transfer of model parameters (4) improve the resource utilization in the network.


Improved Hybrid Layered Image Compression using Deep Learning and Traditional Codecs

arXiv.org Machine Learning

Recently deep learning-based methods have been applied in image compression and achieved many promising results. In this paper, we propose an improved hybrid layered image compression framework by combining deep learning and the traditional image codecs. At the encoder, we first use a convolutional neural network (CNN) to obtain a compact representation of the input image, which is losslessly encoded by the FLIF codec as the base layer of the bit stream. A coarse reconstruction of the input is obtained by another CNN from the reconstructed compact representation. The residual between the input and the coarse reconstruction is then obtained and encoded by the H.265/HEVC-based BPG codec as the enhancement layer of the bit stream. Experimental results using the Kodak and Tecnick datasets show that the proposed scheme outperforms the state-of-the-art deep learning-based layered coding scheme and traditional codecs including BPG in both PSNR and MS-SSIM metrics across a wide range of bit rates, when the images are coded in the RGB444 domain.