Lee, Xian Yeow
Multi-Agent Decision Transformers for Dynamic Dispatching in Material Handling Systems Leveraging Enterprise Big Data
Lee, Xian Yeow, Wang, Haiyan, Katsumata, Daisuke, Matsui, Takaharu, Gupta, Chetan
Dynamic dispatching rules that allocate resources to tasks in real-time play a critical role in ensuring efficient operations of many automated material handling systems across industries. Traditionally, the dispatching rules deployed are typically the result of manually crafted heuristics based on domain experts' knowledge. Generating these rules is time-consuming and often sub-optimal. As enterprises increasingly accumulate vast amounts of operational data, there is significant potential to leverage this big data to enhance the performance of automated systems. One promising approach is to use Decision Transformers, which can be trained on existing enterprise data to learn better dynamic dispatching rules for improving system throughput. In this work, we study the application of Decision Transformers as dynamic dispatching policies within an actual multi-agent material handling system and identify scenarios where enterprises can effectively leverage Decision Transformers on existing big data to gain business value. Our empirical results demonstrate that Decision Transformers can improve the material handling system's throughput by a considerable amount when the heuristic originally used in the enterprise data exhibits moderate performance and involves no randomness. When the original heuristic has strong performance, Decision Transformers can still improve the throughput but with a smaller improvement margin. However, when the original heuristics contain an element of randomness or when the performance of the dataset is below a certain threshold, Decision Transformers fail to outperform the original heuristic. These results highlight both the potential and limitations of Decision Transformers as dispatching policies for automated industrial material handling systems.
Multi-agent Reinforcement Learning for Dynamic Dispatching in Material Handling Systems
Lee, Xian Yeow, Wang, Haiyan, Katsumata, Daisuke, Matsui, Takaharu, Gupta, Chetan
This paper proposes a multi-agent reinforcement learning (MARL) approach to learn dynamic dispatching strategies, which is crucial for optimizing throughput in material handling systems across diverse industries. To benchmark our method, we developed a material handling environment that reflects the complexities of an actual system, such as various activities at different locations, physical constraints, and inherent uncertainties. To enhance exploration during learning, we propose a method to integrate domain knowledge in the form of existing dynamic dispatching heuristics. Our experimental results show that our method can outperform heuristics by up to 7.4 percent in terms of median throughput. Additionally, we analyze the effect of different architectures on MARL performance when training multiple agents with different functions. We also demonstrate that the MARL agents performance can be further improved by using the first iteration of MARL agents as heuristics to train a second iteration of MARL agents. This work demonstrates the potential of applying MARL to learn effective dynamic dispatching strategies that may be deployed in real-world systems to improve business outcomes.
An ensemble of convolution-based methods for fault detection using vibration signals
Lee, Xian Yeow, Kumar, Aman, Vidyaratne, Lasitha, Rao, Aniruddha Rajendra, Farahat, Ahmed, Gupta, Chetan
This paper focuses on solving a fault detection problem using multivariate time series of vibration signals collected from planetary gearboxes in a test rig. Various traditional machine learning and deep learning methods have been proposed for multivariate time-series classification, including distance-based, functional data-oriented, feature-driven, and convolution kernel-based methods. Recent studies have shown using convolution kernel-based methods like ROCKET, and 1D convolutional neural networks with ResNet and FCN, have robust performance for multivariate time-series data classification. We propose an ensemble of three convolution kernel-based methods and show its efficacy on this fault detection problem by outperforming other approaches and achieving an accuracy of more than 98.8\%.
MDPGT: Momentum-based Decentralized Policy Gradient Tracking
Jiang, Zhanhong, Lee, Xian Yeow, Tan, Sin Yong, Tan, Kai Liang, Balu, Aditya, Lee, Young M., Hegde, Chinmay, Sarkar, Soumik
We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. Moreover, MDPGT provably achieves the best available sample complexity of $\mathcal{O}(N^{-1}\epsilon^{-3})$ for converging to an $\epsilon$-stationary point of the global average of $N$ local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning, and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance $\epsilon$ is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings.
A Graph Policy Network Approach for Volt-Var Control in Power Distribution Systems
Lee, Xian Yeow, Sarkar, Soumik, Wang, Yubo
Volt-var control (VVC) is the problem of operating power distribution systems within healthy regimes by controlling actuators in power systems. Existing works have mostly adopted the conventional routine of representing the power systems (a graph with tree topology) as vectors to train deep reinforcement learning (RL) policies. We propose a framework that combines RL with graph neural networks and study the benefits and limitations of graph-based policy in the VVC setting. Our results show that graph-based policies converge to the same rewards asymptotically however at a slower rate when compared to vector representation counterpart. We conduct further analysis on the impact of both observations and actions: on the observation end, we examine the robustness of graph-based policy on two typical data acquisition errors in power systems, namely sensor communication failure and measurement misalignment. On the action end, we show that actuators have various impacts on the system, thus using a graph representation induced by power systems topology may not be the optimal choice. In the end, we conduct a case study to demonstrate that the choice of readout function architecture and graph augmentation can further improve training performance and robustness.
PowerGym: A Reinforcement Learning Environment for Volt-Var Control in Power Distribution Systems
Fan, Ting-Han, Lee, Xian Yeow, Wang, Yubo
Volt-Var control refers to the control of voltage (Volt) and reactive power (Var) in power distribution systems to achieve healthy operation of the systems. By optimally dispatching voltage regulators, switchable capacitors, and controllable batteries, Volt-Var control helps to flatten voltage profiles and reduce power losses across the power distribution systems. It is hence rated as the most desired function for power distribution systems [Borozan et al., 2001]. The center of the Volt-Var control is an optimization for voltage profiles and power losses governed by networked constraints. Represent a power distribution system as a tree graph (N, ฮพ), where N is the set of nodes or buses and ฮพ is the set of edges or lines and transformers.
Robustifying Reinforcement Learning Agents via Action Space Adversarial Training
Tan, Kai Liang, Esfandiari, Yasaman, Lee, Xian Yeow, Aakanksha, null, Sarkar, Soumik
Adoption of machine learning (ML)-enabled cyber-physical systems (CPS) are becoming prevalent in various sectors of modern society such as transportation, industrial, and power grids. Recent studies in deep reinforcement learning (DRL) have demonstrated its benefits in a large variety of data-driven decisions and control applications. As reliance on ML-enabled systems grows, it is imperative to study the performance of these systems under malicious state and actuator attacks. Traditional control systems employ resilient/fault-tolerant controllers that counter these attacks by correcting the system via error observations. However, in some applications, a resilient controller may not be sufficient to avoid a catastrophic failure. Ideally, a robust approach is more useful in these scenarios where a system is inherently robust (by design) to adversarial attacks. While robust control has a long history of development, robust ML is an emerging research area that has already demonstrated its relevance and urgency. However, the majority of robust ML research has focused on perception tasks and not on decision and control tasks, although the ML (specifically RL) models used for control applications are equally vulnerable to adversarial attacks. In this paper, we show that a well-performing DRL agent that is initially susceptible to action space perturbations (e.g. actuator attacks) can be robustified against similar perturbations through adversarial training.
Spatiotemporally Constrained Action Space Attacks on Deep Reinforcement Learning Agents
Lee, Xian Yeow, Ghadai, Sambit, Tan, Kai Liang, Hegde, Chinmay, Sarkar, Soumik
Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (AS) (corresponding to actuators in engineering systems) are equally perverse; such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose a white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results shows that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents.
Learning to Cope with Adversarial Attacks
Lee, Xian Yeow, Havens, Aaron, Chowdhary, Girish, Sarkar, Soumik
The security of Deep Reinforcement Learning (Deep RL) algorithms deployed in real life applications are of a primary concern. In particular, the robustness of RL agents in cyber-physical systems against adversarial attacks are especially vital since the cost of a malevolent intrusions can be extremely high. Studies have shown Deep Neural Networks (DNN), which forms the core decision-making unit in most modern RL algorithms, are easily subjected to adversarial attacks. Hence, it is imperative that RL agents deployed in real-life applications have the capability to detect and mitigate adversarial attacks in an online fashion. An example of such a framework is the Meta-Learned Advantage Hierarchy (MLAH) agent that utilizes a meta-learning framework to learn policies robustly online. Since the mechanism of this framework are still not fully explored, we conducted multiple experiments to better understand the framework's capabilities and limitations. Our results shows that the MLAH agent exhibits interesting coping behaviors when subjected to different adversarial attacks to maintain a nominal reward. Additionally, the framework exhibits a hierarchical coping capability, based on the adaptability of the Master policy and sub-policies themselves. From empirical results, we also observed that as the interval of adversarial attacks increase, the MLAH agent can maintain a higher distribution of rewards, though at the cost of higher instabilities.
Flow Shape Design for Microfluidic Devices Using Deep Reinforcement Learning
Lee, Xian Yeow, Balu, Aditya, Stoecklein, Daniel, Ganapathysubramanian, Baskar, Sarkar, Soumik
Microfluidic devices are utilized to control and direct flow behavior in a wide variety of applications, particularly in medical diagnostics. A particularly popular form of microfluidics -- called inertial microfluidic flow sculpting -- involves placing a sequence of pillars to controllably deform an initial flow field into a desired one. Inertial flow sculpting can be formally defined as an inverse problem, where one identifies a sequence of pillars (chosen, with replacement, from a finite set of pillars, each of which produce a specific transformation) whose composite transformation results in a user-defined desired transformation. Endemic to most such problems in engineering, inverse problems are usually quite computationally intractable, with most traditional approaches based on search and optimization strategies. In this paper, we pose this inverse problem as a Reinforcement Learning (RL) problem. We train a DoubleDQN agent to learn from this environment. The results suggest that learning is possible using a DoubleDQN model with the success frequency reaching 90% in 200,000 episodes and the rewards converging. While most of the results are obtained by fixing a particular target flow shape to simplify the learning problem, we later demonstrate how to transfer the learning of an agent based on one target shape to another, i.e. from one design to another and thus be useful for a generic design of a flow shape.