Lee, Uichin
K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations
Park, Cheul Young, Cha, Narae, Kang, Soowon, Kim, Auk, Khandoker, Ahsan Habib, Hadjileontiadis, Leontios, Oh, Alice, Jeong, Yong, Lee, Uichin
Recognizing emotions during social interactions has many potential applications with the popularization of low-cost mobile sensors, but a challenge remains with the lack of naturalistic affective interaction data. Most existing emotion datasets do not support studying idiosyncratic emotions arising in the wild as they were collected in constrained environments. Therefore, studying emotions in the context of social interactions requires a novel dataset, and K-EmoCon is such a multimodal dataset with comprehensive annotations of continuous emotions during naturalistic conversations. The dataset contains multimodal measurements, including audiovisual recordings, EEG, and peripheral physiological signals, acquired with off-the-shelf devices from 16 sessions of approximately 10-minute long paired debates on a social issue. Distinct from previous datasets, it includes emotion annotations from all three available perspectives: self, debate partner, and external observers. Raters annotated emotional displays at intervals of every 5 seconds while viewing the debate footage, in terms of arousal-valence and 18 additional categorical emotions. The resulting K-EmoCon is the first publicly available emotion dataset accommodating the multiperspective assessment of emotions during social interactions.
Booming Up the Long Tails: Discovering Potentially Contributive Users in Community-Based Question Answering Services
Sung, Juyup (Korea Advanced Institute of Science and Technology (KAIST)) | Lee, Jae-Gil (Korea Advanced Institute of Science and Technology (KAIST)) | Lee, Uichin (Korea Advanced Institute of Science and Technology (KAIST))
Community-based question answering (CQA) services such as Yahoo! Answers have been widely used by Internet users to get the answers for their inquiries. The CQA services totally rely on the contributions by the users. However, it is known that newcomers are prone to lose their interests and leave the communities. Thus, finding expert users in an early phase when they are still active is essential to improve the chances of motivating them to contribute to the communities further. In this paper, we propose a novel approach to discovering "potentially" contributive users from recently-joined users in CQA services. The likelihood of becoming a contributive user is defined by the user's expertise as well as availability, which we call the answer affordance. The main technical difficulty lies in the fact that such recently-joined users do not have abundant information accumulated for many years. We utilize a user's productive vocabulary to mitigate the lack of available information since the vocabulary is the most fundamental element that reveals his/her knowledge. Extensive experiments were conducted with a huge data set of Naver Knowledge-In (KiN), which is the dominating CQA service in Korea. We demonstrate that the top rankers selected by the answer affordance outperformed those by KiN in terms of the amount of answering activity.