Lee, Tyler
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Seguin, Landan, Ndirango, Anthony, Mishra, Neeli, Chung, SueYeon, Lee, Tyler
Adversarial defenses train deep neural networks to be invariant to the input perturbations from adversarial attacks. Almost all defense strategies achieve this invariance through adversarial training i.e. training on inputs with adversarial perturbations. Although adversarial training is successful at mitigating adversarial attacks, the behavioral differences between adversarially-trained (AT) models and standard models are still poorly understood. Motivated by a recent study on learning robustness without input perturbations by distilling an AT model, we explore what is learned during adversarial training by analyzing the distribution of logits in AT models. We identify three logit characteristics essential to learning adversarial robustness. First, we provide a theoretical justification for the finding that adversarial training shrinks two important characteristics of the logit distribution: the max logit values and the "logit gaps" (difference between the logit max and next largest values) are on average lower for AT models. Second, we show that AT and standard models differ significantly on which samples are high or low confidence, then illustrate clear qualitative differences by visualizing samples with the largest confidence difference. Finally, we find learning information about incorrect classes to be essential to learning robustness by manipulating the non-max logit information during distillation and measuring the impact on the student's robustness. Our results indicate that learning some adversarial robustness without input perturbations requires a model to learn specific sample-wise confidences and incorrect class orderings that follow complex distributions.
Label-efficient audio classification through multitask learning and self-supervision
Lee, Tyler, Gong, Ting, Padhy, Suchismita, Rouditchenko, Andrew, Ndirango, Anthony
Published as a conference paper at ICLR 2019L ABEL-EFFICIENT AUDIO CLASSIFICATION THROUGH MULTITASK LEARNING AND SELF - SUPERVISION Tyler Lee, null Ting Gong, null Suchismita Padhy, null & Anthony Ndirango null Intel AI Lab Santa Clara, CA {tyler.p.lee,ting.gong,suchismita.padhy,anthony.ndirango A BSTRACT While deep learning has been incredibly successful in modeling tasks with large, carefully curated labeled datasets, its application to problems with limited labeled data remains a challenge. The aim of the present work is to improve the label efficiency of large neural networks operating on audio data through a combination of multitask learning and self-supervised learning on unlabeled data. We trained an end-to-end audio feature extractor based on WaveNet that feeds into simple, yet versatile task-specific neural networks. We describe several easily implemented self-supervised learning tasks that can operate on any large, unlabeled audio corpus. We demonstrate that, in scenarios with limited labeled training data, one can significantly improve the performance of three different supervised classification tasks individually by up to 6% through simultaneous training with these additional self-supervised tasks. We also show that incorporating data augmentation into our multitask setting leads to even further gains in performance.