Goto

Collaborating Authors

 Lee, Tan


PodAgent: A Comprehensive Framework for Podcast Generation

arXiv.org Artificial Intelligence

Existing Existing automatic audio generation methods struggle to generate podcast-like audio programs effectively. The key challenges lie in in-depth content generation, appropriate and expressive voice production. This paper proposed PodAgent, a comprehensive framework for creating audio programs. PodAgent 1) generates informative topic-discussion content by designing a Host-Guest-Writer multi-agent collaboration system, 2) builds a voice pool for suitable voice-role matching and 3) utilizes LLM-enhanced speech synthesis method to generate expressive conversational speech. Given the absence of standardized evaluation criteria for podcast-like audio generation, we developed comprehensive assessment guidelines to effectively evaluate the model's performance. Experimental results demonstrate PodAgent's effectiveness, significantly surpassing direct GPT-4 generation in topic-discussion dialogue content, achieving an 87.4% voice-matching accuracy, and producing more expressive speech through LLM-guided synthesis. Demo page: https://podcast-agent.github.io/demo/. Source code: https://github.com/yujxx/PodAgent.


A Parameter-efficient Language Extension Framework for Multilingual ASR

arXiv.org Artificial Intelligence

Covering all languages with a multilingual speech recognition model (MASR) is very difficult. Performing language extension on top of an existing MASR is a desirable choice. In this study, the MASR continual learning problem is probabilistically decomposed into language identity prediction (LP) and cross-lingual adaptation (XLA) sub-problems. Based on this, we propose an architecture-based framework for language extension that can fundamentally solve catastrophic forgetting, debudded as PELE. PELE is designed to be parameter-efficient, incrementally incorporating an add-on module to adapt to a new language. Specifically, different parameter-efficient fine-tuning (PEFT) modules and their variants are explored as potential candidates to perform XLA. Experiments are carried out on 5 new languages with a wide range of low-resourced data sizes. The best-performing PEFT candidate can achieve satisfactory performance across all languages and demonstrates superiority in three of five languages over the continual joint learning setting. Notably, PEFT methods focusing on weight parameters or input features are revealed to be limited in performance, showing significantly inferior extension capabilities compared to inserting a lightweight module in between layers such as an Adapter.


ContextSpeech: Expressive and Efficient Text-to-Speech for Paragraph Reading

arXiv.org Artificial Intelligence

While state-of-the-art Text-to-Speech systems can generate natural speech of very high quality at sentence level, they still meet great challenges in speech generation for paragraph / long-form reading. Such deficiencies are due to i) ignorance of cross-sentence contextual information, and ii) high computation and memory cost for long-form synthesis. To address these issues, this work develops a lightweight yet effective TTS system, ContextSpeech. Specifically, we first design a memory-cached recurrence mechanism to incorporate global text and speech context into sentence encoding. Then we construct hierarchically-structured textual semantics to broaden the scope for global context enhancement. Additionally, we integrate linearized self-attention to improve model efficiency. Experiments show that ContextSpeech significantly improves the voice quality and prosody expressiveness in paragraph reading with competitive model efficiency. Audio samples are available at: https://contextspeech.github.io/demo/


Robust Feature Learning on Long-Duration Sounds for Acoustic Scene Classification

arXiv.org Artificial Intelligence

Acoustic scene classification (ASC) aims to identify the type of scene (environment) in which a given audio signal is recorded. The log-mel feature and convolutional neural network (CNN) have recently become the most popular time-frequency (TF) feature representation and classifier in ASC. An audio signal recorded in a scene may include various sounds overlapping in time and frequency. The previous study suggests that separately considering the long-duration sounds and short-duration sounds in CNN may improve ASC accuracy. This study addresses the problem of the generalization ability of acoustic scene classifiers. In practice, acoustic scene signals' characteristics may be affected by various factors, such as the choice of recording devices and the change of recording locations. When an established ASC system predicts scene classes on audios recorded in unseen scenarios, its accuracy may drop significantly. The long-duration sounds not only contain domain-independent acoustic scene information, but also contain channel information determined by the recording conditions, which is prone to over-fitting. For a more robust ASC system, We propose a robust feature learning (RFL) framework to train the CNN. The RFL framework down-weights CNN learning specifically on long-duration sounds. The proposed method is to train an auxiliary classifier with only long-duration sound information as input. The auxiliary classifier is trained with an auxiliary loss function that assigns less learning weight to poorly classified examples than the standard cross-entropy loss. The experimental results show that the proposed RFL framework can obtain a more robust acoustic scene classifier towards unseen devices and cities.


Bayesian Learning for Deep Neural Network Adaptation

arXiv.org Machine Learning

A key task for speech recognition systems is to reduce the mismatch between the training and evaluation data that is often attributable to speaker differences. To this end, speaker adaptation techniques play a vital role to reduce the mismatch. Model-based speaker adaptation approaches often require sufficient amounts of target speaker data to ensure robustness. When the amount of speaker level data is limited, speaker adaptation is prone to overfitting and poor generalization. To address the issue, this paper proposes a full Bayesian learning based DNN speaker adaptation framework to model speaker-dependent (SD) parameter uncertainty given limited speaker specific adaptation data. This framework is investigated in three forms of model based DNN adaptation techniques: Bayesian learning of hidden unit contributions (BLHUC), Bayesian parameterized activation functions (BPAct), and Bayesian hidden unit bias vectors (BHUB). In all three Bayesian adaptation methods, deterministic SD parameters are replaced by latent variable posterior distributions to be learned for each speaker, whose parameters are efficiently estimated using a variational inference based approach. Experiments conducted on 300-hour speed perturbed Switchboard corpus trained LF-MMI factored TDNN/CNN-TDNN systems featuring i-vector speaker adaptation suggest the proposed Bayesian adaptation approaches consistently outperform the adapted systems using deterministic parameters on the NIST Hub5'00 and RT03 evaluation sets in both unsupervised test time speaker adaptation and speaker adaptive training. The efficacy of the proposed Bayesian adaptation techniques is further demonstrated in a comparison against the state-of-the-art performance obtained on the same task using the most recent hybrid and end-to-end systems reported in the literature.


Enhancing Sound Texture in CNN-Based Acoustic Scene Classification

arXiv.org Machine Learning

Acoustic scene classification is the task of identifying the scene from which the audio signal is recorded. Convolutional neural network (CNN) models are widely adopted with proven successes in acoustic scene classification. However, there is little insight on how an audio scene is perceived in CNN, as what have been demonstrated in image recognition research. In the present study, the Class Activation Mapping (CAM) is utilized to analyze how the log-magnitude Mel-scale filter-bank (log-Mel) features of different acoustic scenes are learned in a CNN classifier. It is noted that distinct high-energy time-frequency components of audio signals generally do not correspond to strong activation on CAM, while the background sound texture are well learned in CNN. In order to make the sound texture more salient, we propose to apply the Difference of Gaussian (DoG) and Sobel operator to process the log-Mel features and enhance edge information of the time-frequency image. Experimental results on the DCASE 2017 ASC challenge show that using edge enhanced log-Mel images as input feature of CNN significantly improves the performance of audio scene classification.