Lee, Seungjun
Generalizable Implicit Neural Representations via Parameterized Latent Dynamics for Baroclinic Ocean Forecasting
Zhao, Guang, Luo, Xihaier, Lee, Seungjun, Ren, Yihui, Yoo, Shinjae, Van Roekel, Luke, Nadiga, Balu, Narayanan, Sri Hari Krishna, Sun, Yixuan, Xu, Wei
Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025 Mesoscale ocean dynamics play a critical role in climate systems, governing heat transport, hurricane genesis, and drought patterns. However, simulating these processes at high resolution remains computationally prohibitive due to their nonlinear, multiscale nature and vast spatiotemporal domains. Implicit neural representations (INRs) reduce the computational costs as resolution-independent surrogates but fail in many-query scenarios (inverse modeling) requiring rapid evaluations across diverse parameters. We present PINROD, a novel framework combining dynamics-aware implicit neural representations with parametrized neural ordinary differential equations to address these limitations. Experiments on ocean mesoscale activity data show superior accuracy over existing baselines and improved computational efficiency compared to standard numerical simulations.
Translation of Multifaceted Data without Re-Training of Machine Translation Systems
Moon, Hyeonseok, Lee, Seungyoon, Hong, Seongtae, Lee, Seungjun, Park, Chanjun, Lim, Heuiseok
Translating major language resources to build minor language resources becomes a widely-used approach. Particularly in translating complex data points composed of multiple components, it is common to translate each component separately. However, we argue that this practice often overlooks the interrelation between components within the same data point. To address this limitation, we propose a novel MT pipeline that considers the intra-data relation in implementing MT for training data. In our MT pipeline, all the components in a data point are concatenated to form a single translation sequence and subsequently reconstructed to the data components after translation. We introduce a Catalyst Statement (CS) to enhance the intra-data relation, and Indicator Token (IT) to assist the decomposition of a translated sequence into its respective data components. Through our approach, we have achieved a considerable improvement in translation quality itself, along with its effectiveness as training data. Compared with the conventional approach that translates each data component separately, our method yields better training data that enhances the performance of the trained model by 2.690 points for the web page ranking (WPR) task, and 0.845 for the question generation (QG) task in the XGLUE benchmark.
Segment Any 3D Object with Language
Lee, Seungjun, Zhao, Yuyang, Lee, Gim Hee
In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-3DIS) with free-form language instructions. Earlier works that rely on only annotated base categories for training suffer from limited generalization to unseen novel categories. Recent works mitigate poor generalizability to novel categories by generating class-agnostic masks or projecting generalized masks from 2D to 3D, but disregard semantic or geometry information, leading to sub-optimal performance. Instead, generating generalizable but semantic-related masks directly from 3D point clouds would result in superior outcomes. In this paper, we introduce Segment any 3D Object with LanguagE (SOLE), which is a semantic and geometric-aware visual-language learning framework with strong generalizability by generating semantic-related masks directly from 3D point clouds. Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder. In addition, to align the 3D segmentation model with various language instructions and enhance the mask quality, we introduce three types of multimodal associations as supervision. Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks, and the results are even close to the fully-supervised counterpart despite the absence of class annotations in the training. Furthermore, extensive qualitative results demonstrate the versatility of our SOLE to language instructions.
Inducing Point Operator Transformer: A Flexible and Scalable Architecture for Solving PDEs
Lee, Seungjun, Oh, Taeil
Solving partial differential equations (PDEs) by learning the solution operators has emerged as an attractive alternative to traditional numerical methods. However, implementing such architectures presents two main challenges: flexibility in handling irregular and arbitrary input and output formats and scalability to large discretizations. Most existing architectures are limited by their desired structure or infeasible to scale large inputs and outputs. To address these issues, we introduce an attention-based model called an inducing-point operator transformer (IPOT). Inspired by inducing points methods, IPOT is designed to handle any input function and output query while capturing global interactions in a computationally efficient way. By detaching the inputs/outputs discretizations from the processor with a smaller latent bottleneck, IPOT offers flexibility in processing arbitrary discretizations and scales linearly with the size of inputs/outputs. Our experimental results demonstrate that IPOT achieves strong performances with manageable computational complexity on an extensive range of PDE benchmarks and real-world weather forecasting scenarios, compared to state-of-the-art methods.