Goto

Collaborating Authors

 Lee, Seung-Koo


Early-stage detection of cognitive impairment by hybrid quantum-classical algorithm using resting-state functional MRI time-series

arXiv.org Artificial Intelligence

Following the recent development of quantum machine learning techniques, the literature has reported several quantum machine learning algorithms for disease detection. This study explores the application of a hybrid quantum-classical algorithm for classifying region-of-interest time-series data obtained from resting-state functional magnetic resonance imaging in patients with early-stage cognitive impairment based on the importance of cognitive decline for dementia or aging. Classical one-dimensional convolutional layers are used together with quantum convolutional neural networks in our hybrid algorithm. In the classical simulation, the proposed hybrid algorithms showed higher balanced accuracies than classical convolutional neural networks under the similar training conditions. Moreover, a total of nine brain regions (left precentral gyrus, right superior temporal gyrus, left rolandic operculum, right rolandic operculum, left parahippocampus, right hippocampus, left medial frontal gyrus, right cerebellum crus, and cerebellar vermis) among 116 brain regions were found to be relatively effective brain regions for the classification based on the model performances. The associations of the selected nine regions with cognitive decline, as found in previous studies, were additionally validated through seed-based functional connectivity analysis. We confirmed both the improvement of model performance with the quantum convolutional neural network and neuroscientific validities of brain regions from our hybrid quantum-classical model.


Federated Learning Enables Big Data for Rare Cancer Boundary Detection

arXiv.org Artificial Intelligence

Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.