Lee, Seongju
3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results
Kiefer, Benjamin, Žust, Lojze, Muhovič, Jon, Kristan, Matej, Perš, Janez, Teršek, Matija, Desai, Uma Mudenagudi Chaitra, Wiliem, Arnold, Kreis, Marten, Akalwadi, Nikhil, Quan, Yitong, Zhong, Zhiqiang, Zhang, Zhe, Liu, Sujie, Chen, Xuran, Yang, Yang, Fabijanić, Matej, Ferreira, Fausto, Lee, Seongju, Lee, Junseok, Lee, Kyoobin, Yao, Shanliang, Guan, Runwei, Huang, Xiaoyu, Ni, Yi, Kumar, Himanshu, Feng, Yuan, Cheng, Yi-Ching, Lin, Tzu-Yu, Lee, Chia-Ming, Hsu, Chih-Chung, Sheikh, Jannik, Michel, Andreas, Gross, Wolfgang, Weinmann, Martin, Šarić, Josip, Lin, Yipeng, Yang, Xiang, Jiang, Nan, Lu, Yutang, Feng, Fei, Awad, Ali, Lucas, Evan, Saleem, Ashraf, Cheng, Ching-Heng, Lin, Yu-Fan, Lin, Tzu-Yu, Hsu, Chih-Chung
The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.
Intra- and Inter-epoch Temporal Context Network (IITNet) for Automatic Sleep Stage Scoring
Back, Seunghyeok, Lee, Seongju, Seo, Hogeon, Park, Deokhwan, Kim, Tae, Lee, Kyoobin
This study proposes a novel deep learning model, called IITNet, to learn intra- and inter-epoch temporal contexts from a raw single channel electroencephalogram (EEG) for automatic sleep stage scoring. When sleep experts identify the sleep stage of a 30-second PSG data called an epoch, they investigate the sleep-related events such as sleep spindles, K-complex, and frequency components from local segments of an epoch (sub-epoch) and consider the relations between sleep-related events of successive epochs to follow the transition rules. Inspired by this, IITNet learns how to encode sub-epoch into representative feature via a deep residual network, then captures contextual information in the sequence of representative features via BiLSTM. Thus, IITNet can extract features in sub-epoch level and consider temporal context not only between epochs but also in an epoch. IITNet is an end-to-end architecture and does not need any preprocessing, handcrafted feature design, balanced sampling, pre-training, or fine-tuning. Our model was trained and evaluated in Sleep-EDF and MASS datasets and outperformed other state-of-the-art results on both the datasets with the overall accuracy (ACC) of 84.0% and 86.6%, macro F1-score (MF1) of 77.7 and 80.8, and Cohen's kappa of 0.78 and 0.80 in Sleep-EDF and MASS, respectively.