Not enough data to create a plot.
Try a different view from the menu above.
Lee, Roy Ka-Wei
Shifting Long-Context LLMs Research from Input to Output
Wu, Yuhao, Bai, Yushi, Hu, Zhiqing, Tu, Shangqing, Hee, Ming Shan, Li, Juanzi, Lee, Roy Ka-Wei
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
Demystifying Hateful Content: Leveraging Large Multimodal Models for Hateful Meme Detection with Explainable Decisions
Hee, Ming Shan, Lee, Roy Ka-Wei
Hateful meme detection presents a significant challenge as a multimodal task due to the complexity of interpreting implicit hate messages and contextual cues within memes. Previous approaches have fine-tuned pre-trained vision-language models (PT-VLMs), leveraging the knowledge they gained during pre-training and their attention mechanisms to understand meme content. However, the reliance of these models on implicit knowledge and complex attention mechanisms renders their decisions difficult to explain, which is crucial for building trust in meme classification. In this paper, we introduce IntMeme, a novel framework that leverages Large Multimodal Models (LMMs) for hateful meme classification with explainable decisions. IntMeme addresses the dual challenges of improving both accuracy and explainability in meme moderation. The framework uses LMMs to generate human-like, interpretive analyses of memes, providing deeper insights into multimodal content and context. Additionally, it uses independent encoding modules for both memes and their interpretations, which are then combined to enhance classification performance. Our approach addresses the opacity and misclassification issues associated with PT-VLMs, optimizing the use of LMMs for hateful meme detection. We demonstrate the effectiveness of IntMeme through comprehensive experiments across three datasets, showcasing its superiority over state-of-the-art models.
Unveiling the Capabilities of Large Language Models in Detecting Offensive Language with Annotation Disagreement
Lu, Junyu, Ma, Kai, Wang, Kaichun, Xiao, Kelaiti, Lee, Roy Ka-Wei, Xu, Bo, Yang, Liang, Lin, Hongfei
Large Language Models (LLMs) have become essential for offensive language detection, yet their ability to handle annotation disagreement remains underexplored. Disagreement samples, which arise from subjective interpretations, pose a unique challenge due to their ambiguous nature. Understanding how LLMs process these cases, particularly their confidence levels, can offer insight into their alignment with human annotators. This study systematically evaluates the performance of multiple LLMs in detecting offensive language at varying levels of annotation agreement. We analyze binary classification accuracy, examine the relationship between model confidence and human disagreement, and explore how disagreement samples influence model decision-making during few-shot learning and instruction fine-tuning. Our findings reveal that LLMs struggle with low-agreement samples, often exhibiting overconfidence in these ambiguous cases. However, utilizing disagreement samples in training improves both detection accuracy and model alignment with human judgment. These insights provide a foundation for enhancing LLM-based offensive language detection in real-world moderation tasks.
Contrastive Token-level Explanations for Graph-based Rumour Detection
Chin, Daniel Wai Kit, Lee, Roy Ka-Wei
The widespread use of social media has accelerated the dissemination of information, but it has also facilitated the spread of harmful rumours, which can disrupt economies, influence political outcomes, and exacerbate public health crises, such as the COVID-19 pandemic. While Graph Neural Network (GNN)-based approaches have shown significant promise in automated rumour detection, they often lack transparency, making their predictions difficult to interpret. Existing graph explainability techniques fall short in addressing the unique challenges posed by the dependencies among feature dimensions in high-dimensional text embeddings used in GNN-based models. In this paper, we introduce Contrastive Token Layerwise Relevance Propagation (CT-LRP), a novel framework designed to enhance the explainability of GNN-based rumour detection. CT-LRP extends current graph explainability methods by providing token-level explanations that offer greater granularity and interpretability. We evaluate the effectiveness of CT-LRP across multiple GNN models trained on three publicly available rumour detection datasets, demonstrating that it consistently produces high-fidelity, meaningful explanations, paving the way for more robust and trustworthy rumour detection systems.
Fairness And Performance In Harmony: Data Debiasing Is All You Need
Liu, Junhua, Hui, Wendy Wan Yee, Lee, Roy Ka-Wei, Lim, Kwan Hui
Fairness in both machine learning (ML) predictions and human decisions is critical, with ML models prone to algorithmic and data bias, and human decisions affected by subjectivity and cognitive bias. This study investigates fairness using a real-world university admission dataset with 870 profiles, leveraging three ML models, namely XGB, Bi-LSTM, and KNN. Textual features are encoded with BERT embeddings. For individual fairness, we assess decision consistency among experts with varied backgrounds and ML models, using a consistency score. Results show ML models outperform humans in fairness by 14.08% to 18.79%. For group fairness, we propose a gender-debiasing pipeline and demonstrate its efficacy in removing gender-specific language without compromising prediction performance. Post-debiasing, all models maintain or improve their classification accuracy, validating the hypothesis that fairness and performance can coexist. Our findings highlight ML's potential to enhance fairness in admissions while maintaining high accuracy, advocating a hybrid approach combining human judgement and ML models.
Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks
Liu, Junhua, Lim, Kwan Hui, Lee, Roy Ka-Wei
How objective and unbiased are we while making decisions? This work investigates cognitive bias identification in high-stake decision making process by human experts, questioning its effectiveness in real-world settings, such as candidates assessments for university admission. We begin with a statistical analysis assessing correlations among different decision points among in the current process, which discovers discrepancies that imply cognitive bias and inconsistency in decisions. This motivates our exploration of bias-aware AI-augmented workflow that surpass human judgment. We propose BGM-HAN, an enhanced Hierarchical Attention Network with Byte-Pair Encoding, Gated Residual Connections and Multi-Head Attention. Using it as a backbone model, we further propose a Shortlist-Analyse-Recommend (SAR) agentic Figure 1: University Admission Decision Process: overview workflow, which simulate real-world decision-making. In our of current workflow and possible agentic augmentation experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models, validated with real-world data. Source code is available at: critical to ensure long-term sustainable outcomes and fairness to https://github.com/junhua/bgm-han.
Bridging Modalities: Enhancing Cross-Modality Hate Speech Detection with Few-Shot In-Context Learning
Hee, Ming Shan, Kumaresan, Aditi, Lee, Roy Ka-Wei
The widespread presence of hate speech on the internet, including formats such as text-based tweets and vision-language memes, poses a significant challenge to digital platform safety. Recent research has developed detection models tailored to specific modalities; however, there is a notable gap in transferring detection capabilities across different formats. This study conducts extensive experiments using few-shot in-context learning with large language models to explore the transferability of hate speech detection between modalities. Our findings demonstrate that text-based hate speech examples can significantly enhance the classification accuracy of vision-language hate speech. Moreover, text-based demonstrations outperform vision-language demonstrations in few-shot learning settings. These results highlight the effectiveness of cross-modality knowledge transfer and offer valuable insights for improving hate speech detection systems.
InstructAV: Instruction Fine-tuning Large Language Models for Authorship Verification
Hu, Yujia, Hu, Zhiqiang, Seah, Chun-Wei, Lee, Roy Ka-Wei
Large Language Models (LLMs) have demonstrated remarkable proficiency in a wide range of NLP tasks. However, when it comes to authorship verification (AV) tasks, which involve determining whether two given texts share the same authorship, even advanced models like ChatGPT exhibit notable limitations. This paper introduces a novel approach, termed InstructAV, for authorship verification. This approach utilizes LLMs in conjunction with a parameter-efficient fine-tuning (PEFT) method to simultaneously improve accuracy and explainability. The distinctiveness of InstructAV lies in its ability to align classification decisions with transparent and understandable explanations, representing a significant progression in the field of authorship verification. Through comprehensive experiments conducted across various datasets, InstructAV demonstrates its state-of-the-art performance on the AV task, offering high classification accuracy coupled with enhanced explanation reliability.
SGHateCheck: Functional Tests for Detecting Hate Speech in Low-Resource Languages of Singapore
Ng, Ri Chi, Prakash, Nirmalendu, Hee, Ming Shan, Choo, Kenny Tsu Wei, Lee, Roy Ka-Wei
To address the limitations of current hate speech detection models, we introduce \textsf{SGHateCheck}, a novel framework designed for the linguistic and cultural context of Singapore and Southeast Asia. It extends the functional testing approach of HateCheck and MHC, employing large language models for translation and paraphrasing into Singapore's main languages, and refining these with native annotators. \textsf{SGHateCheck} reveals critical flaws in state-of-the-art models, highlighting their inadequacy in sensitive content moderation. This work aims to foster the development of more effective hate speech detection tools for diverse linguistic environments, particularly for Singapore and Southeast Asia contexts.
All in an Aggregated Image for In-Image Learning
Wang, Lei, Xu, Wanyu, Hu, Zhiqiang, Lan, Yihuai, Dong, Shan, Wang, Hao, Lee, Roy Ka-Wei, Lim, Ee-Peng
This paper introduces a new in-context learning (ICL) mechanism called In-Image Learning (I$^2$L) that combines demonstration examples, visual cues, and chain-of-thought reasoning into an aggregated image to enhance the capabilities of Large Multimodal Models (e.g., GPT-4V) in multimodal reasoning tasks. Unlike previous approaches that rely on converting images to text or incorporating visual input into language models, I$^2$L consolidates all information into an aggregated image and leverages image processing, understanding, and reasoning abilities. This has several advantages: it reduces inaccurate textual descriptions of complex images, provides flexibility in positioning demonstration examples, and avoids multiple input images and lengthy prompts. We also introduce I$^2$L-Hybrid, a method that combines the strengths of I$^2$L with other ICL methods. Specifically, it uses an automatic strategy to select the most suitable method (I$^2$L or another certain ICL method) for a specific task instance. We conduct extensive experiments to assess the effectiveness of I$^2$L and I$^2$L-Hybrid on MathVista, which covers a variety of complex multimodal reasoning tasks. Additionally, we investigate the influence of image resolution, the number of demonstration examples in a single image, and the positions of these demonstrations in the aggregated image on the effectiveness of I$^2$L. Our code is publicly available at https://github.com/AGI-Edgerunners/IIL.