Lee, Michael D.
The Wisdom of Crowds in the Recollection of Order Information
Steyvers, Mark, Miller, Brent, Hemmer, Pernille, Lee, Michael D.
When individuals independently recollect events or retrieve facts from memory, how can we aggregate these retrieved memories to reconstruct the actual set of events or facts? In this research, we report the performance of individuals in a series of general knowledge tasks, where the goal is to reconstruct from memory the order of historic events, or the order of items along some physical dimension. We introduce two Bayesian models for aggregating order information based on a Thurstonian approach and Mallows model. Both models assume that each individuals reconstruction is based on either a random permutation of the unobserved ground truth, or by a pure guessing strategy. We apply MCMC to make inferences about the underlying truth and the strategies employed by individuals. The models demonstrate a wisdom of crowds" effect, where the aggregated orderings are closer to the true ordering than the orderings of the best individual."
A Bayesian Approach to Diffusion Models of Decision-Making and Response Time
Lee, Michael D., Fuss, Ian G., Navarro, Daniel J.
We present a computational Bayesian approach for Wiener diffusion models, which are prominent accounts of response time distributions in decision-making. We first develop a general closed-form analytic approximation to the response time distributions for one-dimensional diffusion processes, and derive the required Wiener diffusion as a special case. We use this result to undertake Bayesian modeling ofbenchmark data, using posterior sampling to draw inferences about the interesting psychological parameters. With the aid of the benchmark data, we show the Bayesian account has several advantages, including dealing naturally with the parameter variation needed to account for some key features of the data, and providing quantitative measures to guide decisions about model construction.