Lee, Lin-shan
REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR
Tseng, Liang-Hsuan, Hu, En-Pei, Chiang, Cheng-Han, Tseng, Yuan, Lee, Hung-yi, Lee, Lin-shan, Sun, Shao-Hua
Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance.
SpeechDPR: End-to-End Spoken Passage Retrieval for Open-Domain Spoken Question Answering
Lin, Chyi-Jiunn, Lin, Guan-Ting, Chuang, Yung-Sung, Wu, Wei-Lun, Li, Shang-Wen, Mohamed, Abdelrahman, Lee, Hung-yi, Lee, Lin-shan
Spoken Question Answering (SQA) is essential for machines to reply to user's question by finding the answer span within a given spoken passage. SQA has been previously achieved without ASR to avoid recognition errors and Out-of-Vocabulary (OOV) problems. However, the real-world problem of Open-domain SQA (openSQA), in which the machine needs to first retrieve passages that possibly contain the answer from a spoken archive in addition, was never considered. This paper proposes the first known end-to-end framework, Speech Dense Passage Retriever (SpeechDPR), for the retrieval component of the openSQA problem. SpeechDPR learns a sentence-level semantic representation by distilling knowledge from the cascading model of unsupervised ASR (UASR) and text dense retriever (TDR). No manually transcribed speech data is needed. Initial experiments showed performance comparable to the cascading model of UASR and TDR, and significantly better when UASR was poor, verifying this approach is more robust to speech recognition errors.
Improved Speech Separation with Time-and-Frequency Cross-domain Joint Embedding and Clustering
Yang, Gene-Ping, Tuan, Chao-I, Lee, Hung-Yi, Lee, Lin-shan
Speech separation has been very successful with deep learning techniques. Substantial effort has been reported based on approaches over spectrogram, which is well known as the standard time-and-frequency cross-domain representation for speech signals. It is highly correlated to the phonetic structure of speech, or "how the speech sounds" when perceived by human, but primarily frequency domain features carrying temporal behaviour. Very impressive work achieving speech separation over time domain was reported recently, probably because waveforms in time domain may describe the different realizations of speech in a more precise way than spectrogram. In this paper, we propose a framework properly integrating the above two directions, hoping to achieve both purposes. We construct a time-and-frequency feature map by concatenating the 1-dim convolution encoded feature map (for time domain) and the spectrogram (for frequency domain), which was then processed by an embedding network and clustering approaches very similar to those used in time and frequency domain prior works. In this way, the information in the time and frequency domains, as well as the interactions between them, can be jointly considered during embedding and clustering. Very encouraging results (state-of-the-art to our knowledge) were obtained with WSJ0-2mix dataset in preliminary experiments.