Goto

Collaborating Authors

 Lee, Kyumin


Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning

arXiv.org Artificial Intelligence

Textual Attributed Graphs (TAGs) are crucial for modeling complex real-world systems, yet leveraging large language models (LLMs) for TAGs presents unique challenges due to the gap between sequential text processing and graph-structured data. We introduce AskGNN, a novel approach that bridges this gap by leveraging In-Context Learning (ICL) to integrate graph data and task-specific information into LLMs. AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs, incorporating complex graph structures and their supervision signals. Our learning-to-retrieve algorithm optimizes the retriever to select example nodes that maximize LLM performance on graph. Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance, opening new avenues for applying LLMs to graph-structured data without extensive fine-tuning.


From Critique to Clarity: A Pathway to Faithful and Personalized Code Explanations with Large Language Models

arXiv.org Artificial Intelligence

In the realm of software development, providing accurate and personalized code explanations is crucial for both technical professionals and business stakeholders. Technical professionals benefit from enhanced understanding and improved problem-solving skills, while business stakeholders gain insights into project alignments and transparency. Despite the potential, generating such explanations is often time-consuming and challenging. This paper presents an innovative approach that leverages the advanced capabilities of large language models (LLMs) to generate faithful and personalized code explanations. Our methodology integrates prompt enhancement, self-correction mechanisms, personalized content customization, and interaction with external tools, facilitated by collaboration among multiple LLM agents. We evaluate our approach using both automatic and human assessments, demonstrating that our method not only produces accurate explanations but also tailors them to individual user preferences. Our findings suggest that this approach significantly improves the quality and relevance of code explanations, offering a valuable tool for developers and stakeholders alike.


Contrastive Learning with Auxiliary User Detection for Identifying Activities

arXiv.org Artificial Intelligence

Human Activity Recognition (HAR) is essential in ubiquitous computing, with far-reaching real-world applications. While recent SOTA HAR research has demonstrated impressive performance, some key aspects remain under-explored. Firstly, HAR can be both highly contextualized and personalized. However, prior work has predominantly focused on being Context-Aware (CA) while largely ignoring the necessity of being User-Aware (UA). We argue that addressing the impact of innate user action-performing differences is equally crucial as considering external contextual environment settings in HAR tasks. Secondly, being user-aware makes the model acknowledge user discrepancies but does not necessarily guarantee mitigation of these discrepancies, i.e., unified predictions under the same activities. There is a need for a methodology that explicitly enforces closer (different user, same activity) representations. To bridge this gap, we introduce CLAUDIA, a novel framework designed to address these issues. Specifically, we expand the contextual scope of the CA-HAR task by integrating User Identification (UI) within the CA-HAR framework, jointly predicting both CA-HAR and UI in a new task called User and Context-Aware HAR (UCA-HAR). This approach enriches personalized and contextual understanding by jointly learning user-invariant and user-specific patterns. Inspired by SOTA designs in the visual domain, we introduce a supervised contrastive loss objective on instance-instance pairs to enhance model efficacy and improve learned feature quality. Evaluation across three real-world CA-HAR datasets reveals substantial performance enhancements, with average improvements ranging from 5.8% to 14.1% in Matthew's Correlation Coefficient and 3.0% to 7.2% in Macro F1 score.


Deep Heterogeneous Contrastive Hyper-Graph Learning for In-the-Wild Context-Aware Human Activity Recognition

arXiv.org Artificial Intelligence

Human Activity Recognition (HAR) is a challenging, multi-label classification problem as activities may co-occur and sensor signals corresponding to the same activity may vary in different contexts (e.g., different device placements). This paper proposes a Deep Heterogeneous Contrastive Hyper-Graph Learning (DHC-HGL) framework that captures heterogenous Context-Aware HAR (CA-HAR) hypergraph properties in a message-passing and neighborhood-aggregation fashion. Prior work only explored homogeneous or shallow-node-heterogeneous graphs. DHC-HGL handles heterogeneous CA-HAR data by innovatively 1) Constructing three different types of sub-hypergraphs that are each passed through different custom HyperGraph Convolution (HGC) layers designed to handle edge-heterogeneity and 2) Adopting a contrastive loss function to ensure node-heterogeneity. In rigorous evaluation on two CA-HAR datasets, DHC-HGL significantly outperformed state-of-the-art baselines by 5.8% to 16.7% on Matthews Correlation Coefficient (MCC) and 3.0% to 8.4% on Macro F1 scores. UMAP visualizations of learned CA-HAR node embeddings are also presented to enhance model explainability.


Reducing and Exploiting Data Augmentation Noise through Meta Reweighting Contrastive Learning for Text Classification

arXiv.org Artificial Intelligence

Data augmentation has shown its effectiveness in resolving the data-hungry problem and improving model's generalization ability. However, the quality of augmented data can be varied, especially compared with the raw/original data. To boost deep learning models' performance given augmented data/samples in text classification tasks, we propose a novel framework, which leverages both meta learning and contrastive learning techniques as parts of our design for reweighting the augmented samples and refining their feature representations based on their quality. As part of the framework, we propose novel weight-dependent enqueue and dequeue algorithms to utilize augmented samples' weight/quality information effectively. Through experiments, we show that our framework can reasonably cooperate with existing deep learning models (e.g., RoBERTa-base and Text-CNN) and augmentation techniques (e.g., Wordnet and Easydata) for specific supervised learning tasks. Experiment results show that our framework achieves an average of 1.6%, up to 4.3% absolute improvement on Text-CNN encoders and an average of 1.4%, up to 4.4% absolute improvement on RoBERTa-base encoders on seven GLUE benchmark datasets compared with the best baseline. We present an indepth analysis of our framework design, revealing the non-trivial contributions of our network components. Our code is publicly available for better reproducibility.


Wildlife Product Trading in Online Social Networks: A Case Study on Ivory-Related Product Sales Promotion Posts

arXiv.org Artificial Intelligence

Wildlife trafficking (WLT) has emerged as a global issue, with traffickers expanding their operations from offline to online platforms, utilizing e-commerce websites and social networks to enhance their illicit trade. This paper addresses the challenge of detecting and recognizing wildlife product sales promotion behaviors in online social networks, a crucial aspect in combating these environmentally harmful activities. To counter these environmentally damaging illegal operations, in this research, we focus on wildlife product sales promotion behaviors in online social networks. Specifically, 1) A scalable dataset related to wildlife product trading is collected using a network-based approach. This dataset is labeled through a human-in-the-loop machine learning process, distinguishing positive class samples containing wildlife product selling posts and hard-negatives representing normal posts misclassified as potential WLT posts, subsequently corrected by human annotators. 2) We benchmark the machine learning results on the proposed dataset and build a practical framework that automatically identifies suspicious wildlife selling posts and accounts, sufficiently leveraging the multi-modal nature of online social networks. 3) This research delves into an in-depth analysis of trading posts, shedding light on the systematic and organized selling behaviors prevalent in the current landscape. We provide detailed insights into the nature of these behaviors, contributing valuable information for understanding and countering illegal wildlife product trading.


An Effective, Robust and Fairness-aware Hate Speech Detection Framework

arXiv.org Artificial Intelligence

With the widespread online social networks, hate speeches are spreading faster and causing more damage than ever before. Existing hate speech detection methods have limitations in several aspects, such as handling data insufficiency, estimating model uncertainty, improving robustness against malicious attacks, and handling unintended bias (i.e., fairness). There is an urgent need for accurate, robust, and fair hate speech classification in online social networks. To bridge the gap, we design a data-augmented, fairness addressed, and uncertainty estimated novel framework. As parts of the framework, we propose Bidirectional Quaternion-Quasi-LSTM layers to balance effectiveness and efficiency. To build a generalized model, we combine five datasets collected from three platforms. Experiment results show that our model outperforms eight state-of-the-art methods under both no attack scenario and various attack scenarios, indicating the effectiveness and robustness of our model. We share our code along with combined dataset for better future research


SWE2: SubWord Enriched and Significant Word Emphasized Framework for Hate Speech Detection

arXiv.org Artificial Intelligence

Hate speech detection on online social networks has become one of the emerging hot topics in recent years. With the broad spread and fast propagation speed across online social networks, hate speech makes significant impacts on society by increasing prejudice and hurting people. Therefore, there are aroused attention and concern from both industry and academia. In this paper, we address the hate speech problem and propose a novel hate speech detection framework called SWE2, which only relies on the content of messages and automatically identifies hate speech. In particular, our framework exploits both word-level semantic information and sub-word knowledge. It is intuitively persuasive and also practically performs well under a situation with/without character-level adversarial attack. Experimental results show that our proposed model achieves 0.975 accuracy and 0.953 macro F1, outperforming 7 state-of-the-art baselines under no adversarial attack. Our model robustly and significantly performed well under extreme adversarial attack (manipulation of 50% messages), achieving 0.967 accuracy and 0.934 macro F1.


Heterogeneous Hyper-Graph Neural Networks for Context-aware Human Activity Recognition

arXiv.org Artificial Intelligence

Context-aware Human Activity Recognition (CHAR) is challenging due to the need to recognize the user's current activity from signals that vary significantly with contextual factors such as phone placements and the varied styles with which different users perform the same activity. In this paper, we argue that context-aware activity visit patterns in realistic in-the-wild data can equivocally be considered as a general graph representation learning task. We posit that exploiting underlying graphical patterns in CHAR data can improve CHAR task performance and representation learning. Building on the intuition that certain activities are frequently performed with the phone placed in certain positions, we focus on the context-aware human activity problem of recognizing the tuple. We demonstrate that CHAR data has an underlying graph structure that can be viewed as a heterogenous hypergraph that has multiple types of nodes and hyperedges (an edge connecting more than two nodes). Subsequently, learning representations becomes a graph node representation learning problem. After task transformation, we further propose a novel Heterogeneous HyperGraph Neural Network architecture for Context-aware Human Activity Recognition (HHGNN-CHAR), with three types of heterogeneous nodes (user, phone placement, and activity). Connections between all types of nodes are represented by hyperedges. Rigorous evaluation demonstrated that on an unscripted, in-the-wild CHAR dataset, our proposed framework significantly outperforms state-of-the-art (SOTA) baselines including CHAR models that do not exploit graphs, and GNN variants that do not incorporate heterogeneous nodes or hyperedges with overall improvements 14.04% on Matthews Correlation Coefficient (MCC) and 7.01% on Macro F1 scores.


Empowering Large Language Models for Textual Data Augmentation

arXiv.org Artificial Intelligence

With the capabilities of understanding and executing natural language instructions, Large language models (LLMs) can potentially act as a powerful tool for textual data augmentation. However, the quality of augmented data depends heavily on the augmentation instructions provided, and the effectiveness can fluctuate across different downstream tasks. While manually crafting and selecting instructions can offer some improvement, this approach faces scalability and consistency issues in practice due to the diversity of downstream tasks. In this work, we address these limitations by proposing a new solution, which can automatically generate a large pool of augmentation instructions and select the most suitable task-informed instructions, thereby empowering LLMs to create high-quality augmented data for different downstream tasks. Empirically, the proposed approach consistently generates augmented data with better quality compared to non-LLM and LLM-based data augmentation methods, leading to the best performance on 26 few-shot learning tasks sourced from a wide range of application domains.