Goto

Collaborating Authors

 Lee, Kanghoon


Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm

arXiv.org Artificial Intelligence

Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.


ELA: Exploited Level Augmentation for Offline Learning in Zero-Sum Games

arXiv.org Artificial Intelligence

Offline learning has become widely used due to its ability to derive effective policies from offline datasets gathered by expert demonstrators without interacting with the environment directly. Recent research has explored various ways to enhance offline learning efficiency by considering the characteristics (e.g., expertise level or multiple demonstrators) of the dataset. However, a different approach is necessary in the context of zero-sum games, where outcomes vary significantly based on the strategy of the opponent. In this study, we introduce a novel approach that uses unsupervised learning techniques to estimate the exploited level of each trajectory from the offline dataset of zero-sum games made by diverse demonstrators. Subsequently, we incorporate the estimated exploited level into the offline learning to maximize the influence of the dominant strategy. Our method enables interpretable exploited level estimation in multiple zero-sum games and effectively identifies dominant strategy data. Also, our exploited level augmented offline learning significantly enhances the original offline learning algorithms including imitation learning and offline reinforcement learning for zero-sum games.


Interactive Autonomous Navigation with Internal State Inference and Interactivity Estimation

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) provides a promising way for intelligent agents (e.g., autonomous vehicles) to learn to navigate complex scenarios. However, DRL with neural networks as function approximators is typically considered a black box with little explainability and often suffers from suboptimal performance, especially for autonomous navigation in highly interactive multi-agent environments. To address these issues, we propose three auxiliary tasks with spatio-temporal relational reasoning and integrate them into the standard DRL framework, which improves the decision making performance and provides explainable intermediate indicators. We propose to explicitly infer the internal states (i.e., traits and intentions) of surrounding agents (e.g., human drivers) as well as to predict their future trajectories in the situations with and without the ego agent through counterfactual reasoning. These auxiliary tasks provide additional supervision signals to infer the behavior patterns of other interactive agents. Multiple variants of framework integration strategies are compared. We also employ a spatio-temporal graph neural network to encode relations between dynamic entities, which enhances both internal state inference and decision making of the ego agent. Moreover, we propose an interactivity estimation mechanism based on the difference between predicted trajectories in these two situations, which indicates the degree of influence of the ego agent on other agents. To validate the proposed method, we design an intersection driving simulator based on the Intelligent Intersection Driver Model (IIDM) that simulates vehicles and pedestrians. Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics and provides explainable intermediate indicators (i.e., internal states, and interactivity scores) for decision making.


Robust Driving Policy Learning with Guided Meta Reinforcement Learning

arXiv.org Artificial Intelligence

Although deep reinforcement learning (DRL) has shown promising results for autonomous navigation in interactive traffic scenarios, existing work typically adopts a fixed behavior policy to control social vehicles in the training environment. This may cause the learned driving policy to overfit the environment, making it difficult to interact well with vehicles with different, unseen behaviors. In this work, we introduce an efficient method to train diverse driving policies for social vehicles as a single meta-policy. By randomizing the interaction-based reward functions of social vehicles, we can generate diverse objectives and efficiently train the meta-policy through guiding policies that achieve specific objectives. We further propose a training strategy to enhance the robustness of the ego vehicle's driving policy using the environment where social vehicles are controlled by the learned meta-policy. Our method successfully learns an ego driving policy that generalizes well to unseen situations with out-of-distribution (OOD) social agents' behaviors in a challenging uncontrolled T-intersection scenario.


Stochastic Doubly Robust Gradient

arXiv.org Machine Learning

When training a machine learning model with observational data, it is often encountered that some values are systemically missing. Learning from the incomplete data in which the missingness depends on some covariates may lead to biased estimation of parameters and even harm the fairness of decision outcome. This paper proposes how to adjust the causal effect of covariates on the missingness when training models using stochastic gradient descent (SGD). Inspired by the design of doubly robust estimator and its theoretical property of double robustness, we introduce stochastic doubly robust gradient (SDRG) consisting of two models: weight-corrected gradients for inverse propensity score weighting and per-covariate control variates for regression adjustment. Also, we identify the connection between double robustness and variance reduction in SGD by demonstrating the SDRG algorithm with a unifying framework for variance reduced SGD. The performance of our approach is empirically tested by showing the convergence in training image classifiers with several examples of missing data.


Reward Shaping for Model-Based Bayesian Reinforcement Learning

AAAI Conferences

Bayesian reinforcement learning (BRL) provides a formal framework for optimal exploration-exploitation tradeoff in reinforcement learning. Unfortunately, it is generally intractable to find the Bayes-optimal behavior except for restricted cases. As a consequence, many BRL algorithms, model-based approaches in particular, rely on approximated models or real-time search methods. In this paper, we present potential-based shaping for improving the learning performance in model-based BRL. We propose a number of potential functions that are particularly well suited for BRL, and are domain-independent in the sense that they do not require any prior knowledge about the actual environment. By incorporating the potential function into real-time heuristic search, we show that we can significantly improve the learning performance in standard benchmark domains.


Tighter Value Function Bounds for Bayesian Reinforcement Learning

AAAI Conferences

Bayesian reinforcement learning (BRL) provides a principled framework for optimal exploration-exploitation tradeoff in reinforcement learning. We focus on model based BRL, which involves a compact formulation of the optimal tradeoff from the Bayesian perspective. However, it still remains a computational challenge to compute the Bayes-optimal policy. In this paper, we propose a novel approach to compute tighter value function bounds of the Bayes-optimal value function, which is crucial for improving the performance of many model-based BRL algorithms. We then present how our bounds can be integrated into real-time AO* heuristic search, and provide a theoretical analysis on the impact of improved bounds on the search efficiency. We also provide empirical results on standard BRL domains that demonstrate the effectiveness of our approach.