Lee, Junsoo
TCAN: Animating Human Images with Temporally Consistent Pose Guidance using Diffusion Models
Kim, Jeongho, Kim, Min-Jung, Lee, Junsoo, Choo, Jaegul
Pose-driven human-image animation diffusion models have shown remarkable capabilities in realistic human video synthesis. Despite the promising results achieved by previous approaches, challenges persist in achieving temporally consistent animation and ensuring robustness with off-the-shelf pose detectors. In this paper, we present TCAN, a pose-driven human image animation method that is robust to erroneous poses and consistent over time. In contrast to previous methods, we utilize the pre-trained ControlNet without fine-tuning to leverage its extensive pre-acquired knowledge from numerous pose-image-caption pairs. To keep the ControlNet frozen, we adapt LoRA to the UNet layers, enabling the network to align the latent space between the pose and appearance features. Additionally, by introducing an additional temporal layer to the ControlNet, we enhance robustness against outliers of the pose detector. Through the analysis of attention maps over the temporal axis, we also designed a novel temperature map leveraging pose information, allowing for a more static background. Extensive experiments demonstrate that the proposed method can achieve promising results in video synthesis tasks encompassing various poses, like chibi.
DiffBlender: Scalable and Composable Multimodal Text-to-Image Diffusion Models
Kim, Sungnyun, Lee, Junsoo, Hong, Kibeom, Kim, Daesik, Ahn, Namhyuk
In this study, we aim to extend the capabilities of diffusion-based text-to-image (T2I) generation models by incorporating diverse modalities beyond textual description, such as sketch, box, color palette, and style embedding, within a single model. We thus design a multimodal T2I diffusion model, coined as DiffBlender, by separating the channels of conditions into three types, i.e., image forms, spatial tokens, and non-spatial tokens. The unique architecture of DiffBlender facilitates adding new input modalities, pioneering a scalable framework for conditional image generation. Notably, we achieve this without altering the parameters of the existing generative model, Stable Diffusion, only with updating partial components. Our study establishes new benchmarks in multimodal generation through quantitative and qualitative comparisons with existing conditional generation methods. We demonstrate that DiffBlender faithfully blends all the provided information and showcase its various applications in the detailed image synthesis.
Reference-based Image Composition with Sketch via Structure-aware Diffusion Model
Kim, Kangyeol, Park, Sunghyun, Lee, Junsoo, Choo, Jaegul
Recent remarkable improvements in large-scale text-to-image generative models have shown promising results in generating high-fidelity images. To further enhance editability and enable fine-grained generation, we introduce a multi-input-conditioned image composition model that incorporates a sketch as a novel modal, alongside a reference image. Thanks to the edge-level controllability using sketches, our method enables a user to edit or complete an image sub-part with a desired structure (i.e., sketch) and content (i.e., reference image). Our framework fine-tunes a pre-trained diffusion model to complete missing regions using the reference image while maintaining sketch guidance. Albeit simple, this leads to wide opportunities to fulfill user needs for obtaining the in-demand images. Through extensive experiments, we demonstrate that our proposed method offers unique use cases for image manipulation, enabling user-driven modifications of arbitrary scenes.
Continuous-Time Video Generation via Learning Motion Dynamics with Neural ODE
Kim, Kangyeol, Park, Sunghyun, Lee, Junsoo, Lee, Joonseok, Kim, Sookyung, Choo, Jaegul, Choi, Edward
In order to perform unconditional video generation, we must learn the distribution of the real-world videos. In an effort to synthesize high-quality videos, various studies attempted to learn a mapping function between noise and videos, including recent efforts to separate motion distribution and appearance distribution. Previous methods, however, learn motion dynamics in discretized, fixed-interval timesteps, which is contrary to the continuous nature of motion of a physical body. In this paper, we propose a novel video generation approach that learns separate distributions for motion and appearance, the former modeled by neural ODE to learn natural motion dynamics. Specifically, we employ a two-stage approach where the first stage converts a noise vector to a sequence of keypoints in arbitrary frame rates, and the second stage synthesizes videos based on the given keypoints sequence and the appearance noise vector. Our model not only quantitatively outperforms recent baselines for video generation, but also demonstrates versatile functionality such as dynamic frame rate manipulation and motion transfer between two datasets, thus opening new doors to diverse video generation applications.