Lee, Jungsoo
Deep Imbalanced Time-series Forecasting via Local Discrepancy Density
Park, Junwoo, Lee, Jungsoo, Cho, Youngin, Shin, Woncheol, Kim, Dongmin, Choo, Jaegul, Choi, Edward
Time-series forecasting models often encounter abrupt changes in a given period of time which generally occur due to unexpected or unknown events. Despite their scarce occurrences in the training set, abrupt changes incur loss that significantly contributes to the total loss. Therefore, they act as noisy training samples and prevent the model from learning generalizable patterns, namely the normal states. Based on our findings, we propose a reweighting framework that down-weights the losses incurred by abrupt changes and up-weights those by normal states. For the reweighting framework, we first define a measurement termed Local Discrepancy (LD) which measures the degree of abruptness of a change in a given period of time. Since a training set is mostly composed of normal states, we then consider how frequently the temporal changes appear in the training set based on LD. Our reweighting framework is applicable to existing time-series forecasting models regardless of the architectures. Through extensive experiments on 12 time-series forecasting models over eight datasets with various in-output sequence lengths, we demonstrate that applying our reweighting framework reduces MSE by 10.1% on average and by up to 18.6% in the state-of-the-art model.
Improving Scene Text Recognition for Character-Level Long-Tailed Distribution
Park, Sunghyun, Chung, Sunghyo, Lee, Jungsoo, Choo, Jaegul
Despite the recent remarkable improvements in scene text recognition (STR), the majority of the studies focused mainly on the English language, which only includes few number of characters. However, STR models show a large performance degradation on languages with a numerous number of characters (e.g., Chinese and Korean), especially on characters that rarely appear due to the long-tailed distribution of characters in such languages. To address such an issue, we conducted an empirical analysis using synthetic datasets with different character-level distributions (e.g., balanced and long-tailed distributions). While increasing a substantial number of tail classes without considering the context helps the model to correctly recognize characters individually, training with such a synthetic dataset interferes the model with learning the contextual information (i.e., relation among characters), which is also important for predicting the whole word. Based on this motivation, we propose a novel Context-Aware and Free Experts Network (CAFE-Net) using two experts: 1) context-aware expert learns the contextual representation trained with a long-tailed dataset composed of common words used in everyday life and 2) context-free expert focuses on correctly predicting individual characters by utilizing a dataset with a balanced number of characters. By training two experts to focus on learning contextual and visual representations, respectively, we propose a novel confidence ensemble method to compensate the limitation of each expert. Through the experiments, we demonstrate that CAFE-Net improves the STR performance on languages containing numerous number of characters. Moreover, we show that CAFE-Net is easily applicable to various STR models.