Goto

Collaborating Authors

 Lee, Jin Joo


Affective Personalization of a Social Robot Tutor for Children’s Second Language Skills

AAAI Conferences

Though substantial research has been dedicated towards using technology to improve education, no current methods are as effective as one-on-one tutoring. A critical, though relatively understudied, aspect of effective tutoring is modulating the student's affective state throughout the tutoring session in order to maximize long-term learning gains. We developed an integrated experimental paradigm in which children play a second-language learning game on a tablet, in collaboration with a fully autonomous social robotic learning companion. As part of the system, we measured children's valence and engagement via an automatic facial expression analysis system. These signals were combined into a reward signal that fed into the robot's affective reinforcement learning algorithm. Over several sessions, the robot played the game and personalized its motivational strategies (using verbal and non-verbal actions) to each student. We evaluated this system with 34 children in preschool classrooms for a duration of two months. We saw that (1) children learned new words from the repeated tutoring sessions, (2) the affective policy personalized to students over the duration of the study, and (3) students who interacted with a robot that personalized its affective feedback strategy showed a significant increase in valence, as compared to students who interacted with a non-personalizing robot. This integrated system of tablet-based educational content, affective sensing, affective policy learning, and an autonomous social robot holds great promise for a more comprehensive approach to personalized tutoring.


Modeling the Dynamics of Nonverbal Behavior on Interpersonal Trust for Human-Robot Interactions

AAAI Conferences

We describe research towards creating a computational model for recognizing interpersonal trust in social interactions. We found that four negative gestural cues— leaning-backward, face-touching, hand-touching, and crossing-arms—are together predictive of lower levels of trust. Three positive gestural cues—leaning- forward, having arms-in-lap, and open-arms—are predictive of higher levels of trust. We train a probabilistic graphical model using natural social interaction data, a “Trust Hidden Markov Model” that incorporates the occurrence of these seven important gestures throughout the social interaction. This Trust HMM predicts with 69.44% accuracy whether an individual is willing to behave cooperatively or uncooperatively with their novel partner; in comparison, a gesture-ignorant model achieves 63.89% accuracy. We attempt to automate this recognition process by detecting those trust-related behaviors through 3D motion capture technology and gesture recognition algorithms. We aim to eventually create a hierarchical system—with low-level gesture recognition for high-level trust recognition—that is capable of predicting whether an individual finds another to be a trustworthy or untrustworthy partner through their non- verbal expressions.