Lee, Jay-Yoon
Introducing Verification Task of Set Consistency with Set-Consistency Energy Networks
Song, Mooho, Son, Hyeryung, Lee, Jay-Yoon
Examining logical inconsistencies among multiple statements (such as collections of sentences or question-answer pairs) is a crucial challenge in machine learning, particularly for ensuring the safety and reliability of models. Traditional methods that rely on pairwise comparisons often fail to capture inconsistencies that only emerge when more than two statements are evaluated collectively. To address this gap, we introduce the task of set-consistency verification, an extension of natural language inference (NLI) that assesses the logical coherence of entire sets rather than isolated pairs. Building on this task, we present the Set-Consistency Energy Network (SC-Energy), a novel model that employs a contrastive loss framework to learn the compatibility among a collection of statements. Our approach not only efficiently verifies inconsistencies and pinpoints the specific statements responsible for logical contradictions, but also significantly outperforms existing methods including prompting-based LLM models. Furthermore, we release two new datasets: Set-LConVQA and Set-SNLI for set-consistency verification task.
GraphCheck: Multi-Path Fact-Checking with Entity-Relationship Graphs
Jeon, Hyewon, Lee, Jay-Yoon
Automated fact-checking aims to assess the truthfulness of text based on relevant evidence, yet verifying complex claims requiring multi-hop reasoning remains a significant challenge. We propose GraphCheck, a novel framework that converts claims into entity-relationship graphs for comprehensive verification. By identifying relation between explicit entities and latent entities across multiple paths, GraphCheck enhances the adaptability and robustness of verification. Furthermore, we introduce DP-GraphCheck, a two-stage variant that improves performance by incorporating direct prompting as an initial filtering step. Experiments on the HOVER and EX-FEVER datasets show that our approach outperforms existing methods, particularly in multi-hop reasoning tasks. Furthermore, our two-stage framework generalizes well to other fact-checking pipelines, demonstrating its versatility.
Mind the Gap: Aligning the Brain with Language Models Requires a Nonlinear and Multimodal Approach
Han, Danny Dongyeop, Cho, Yunju, Cha, Jiook, Lee, Jay-Yoon
Self-supervised language and audio models effectively predict brain responses to speech. However, traditional prediction models rely on linear mappings from unimodal features, despite the complex integration of auditory signals with linguistic and semantic information across widespread brain networks during speech comprehension. Here, we introduce a nonlinear, multimodal prediction model that combines audio and linguistic features from pre-trained models (e.g., LLAMA, Whisper). Our approach achieves a 17.2% and 17.9% improvement in prediction performance (unnormalized and normalized correlation) over traditional unimodal linear models, as well as a 7.7% and 14.4% improvement, respectively, over prior state-of-the-art models. These improvements represent a major step towards future robust in-silico testing and improved decoding performance. They also reveal how auditory and semantic information are fused in motor, somatosensory, and higher-level semantic regions, aligning with existing neurolinguistic theories. Overall, our work highlights the often neglected potential of nonlinear and multimodal approaches to brain modeling, paving the way for future studies to embrace these strategies in naturalistic neurolinguistics research.
Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models
Park, Seong-Il, Lee, Jay-Yoon
Retrieval Augmented Language Models (RALMs) have gained significant attention for their ability to generate accurate answer and improve efficiency. However, RALMs are inherently vulnerable to imperfect information due to their reliance on the imperfect retriever or knowledge source. We identify three common scenarios-unanswerable, adversarial, conflicting-where retrieved document sets can confuse RALM with plausible real-world examples. We present the first comprehensive investigation to assess how well RALMs detect and handle such problematic scenarios. Among these scenarios, to systematically examine adversarial robustness we propose a new adversarial attack method, Generative model-based ADVersarial attack (GenADV) and a novel metric Robustness under Additional Document (RAD). Our findings reveal that RALMs often fail to identify the unanswerability or contradiction of a document set, which frequently leads to hallucinations. Moreover, we show the addition of an adversary significantly degrades RALM's performance, with the model becoming even more vulnerable when the two scenarios overlap (adversarial+unanswerable). Our research identifies critical areas for assessing and enhancing the robustness of RALMs, laying the foundation for the development of more robust models.
IntGrad MT: Eliciting LLMs' Machine Translation Capabilities with Sentence Interpolation and Gradual MT
Choi, Seung-Woo, Yoo, Ga-Hyun, Lee, Jay-Yoon
Recent Large Language Models (LLMs) have demonstrated strong performance in translation without needing to be finetuned on additional parallel corpora. However, they still underperform for low-resource language pairs. Previous works have focused on mitigating this issue by leveraging relevant few-shot examples or external resources such as dictionaries or grammar books, making models heavily reliant on these nonparametric sources of information. In this paper, we propose a novel method named IntGrad MT that focuses on fully exploiting an LLM's inherent translation capability. IntGrad MT achieves this by constructing a chain of few-shot examples, each consisting of a source sentence and the model's own translation, that rise incrementally in difficulty. IntGrad MT employs two techniques: Sentence Interpolation, which generates a sequence of sentences that gradually change from an easy sentence to translate to a difficult one, and Gradual MT, which sequentially translates this chain using translations of earlier sentences as few-shot examples for the translation of subsequent ones. With this approach, we observe a substantial enhancement in the xCOMET scores of various LLMs for multiple languages, especially in low-resource languages such as Hindi(8.26), Our approach presents a practical way of enhancing LLMs' performance without extra training. Recent Large Language Models (LLMs) have shown strong performance in translation tasks without the need for fine-tuning on specific parallel datasets. Previous studies have demonstrated that LLMs' translation capabilities are reliable in most use cases, particularly when the source and target language are high-resource languages (Zhu et al., 2024; Robinson et al., 2023; Jiao et al., 2023). However, because LLMs require training on large corpora, they still face challenges when translating low-resource languages that are not sufficiently represented in the training corpora.(Stap Previous research has attempted to address these challenges by leveraging the in-context-learning capabilities of large language models (LLMs), particularly through the use of external knowledge such as few-shot examples or dictionaries during inference.
Towards Efficient Visual-Language Alignment of the Q-Former for Visual Reasoning Tasks
Kim, Sungkyung, Lee, Adam, Park, Junyoung, Chung, Andrew, Oh, Jusang, Lee, Jay-Yoon
Recent advancements in large language models have demonstrated enhanced capabilities in visual reasoning tasks by employing additional encoders for aligning different modalities. While the Q-Former has been widely used as a general encoder for aligning several modalities including image, video, audio, and 3D with large language models, previous works on its efficient training and the analysis of its individual components have been limited. In this work, we investigate the effectiveness of parameter efficient fine-tuning (PEFT) the Q-Former using InstructBLIP with visual reasoning benchmarks ScienceQA and IconQA. We observe that applying PEFT to the Q-Former achieves comparable performance to full fine-tuning using under 2% of the trainable parameters. Additionally, we employ AdaLoRA for dynamic parameter budget reallocation to examine the relative importance of the Q-Former's sublayers with 4 different benchmarks. Our findings reveal that the self-attention layers are noticeably more important in perceptual visual-language reasoning tasks, and relative importance of FFN layers depends on the complexity of visual-language patterns involved in tasks. The code is available at https://github.com/AttentionX/InstructBLIP_PEFT.
Locate&Edit: Energy-based Text Editing for Efficient, Flexible, and Faithful Controlled Text Generation
Son, Hye Ryung, Lee, Jay-Yoon
Recent approaches to controlled text generation (CTG) often involve manipulating the weights or logits of base language models (LMs) at decoding time. However, these methods are inapplicable to latest black-box LMs and ineffective at preserving the core semantics of the base LM's original generations. In this work, we propose Locate&Edit(L&E), an efficient and flexible energy-based approach to CTG, which edits text outputs from a base LM using off-the-shelf energy models. Given text outputs from the base LM, L&E first locates spans that are most relevant to constraints (e.g., toxicity) utilizing energy models, and then edits these spans by replacing them with more suitable alternatives. Importantly, our method is compatible with black-box LMs, as it requires only the text outputs. Also, since L&E doesn't mandate specific architecture for its component models, it can work with a diverse combination of available off-the-shelf models. Moreover, L&E preserves the base LM's original generations, by selectively modifying constraint-related aspects of the texts and leaving others unchanged. These targeted edits also ensure that L&E operates efficiently. Our experiments confirm that L&E achieves superior semantic preservation of the base LM generations and speed, while simultaneously obtaining competitive or improved constraint satisfaction. Furthermore, we analyze how the granularity of energy distribution impacts CTG performance and find that fine-grained, regression-based energy models improve constraint satisfaction, compared to conventional binary classifier energy models.
RE-RAG: Improving Open-Domain QA Performance and Interpretability with Relevance Estimator in Retrieval-Augmented Generation
Kim, Kiseung, Lee, Jay-Yoon
The Retrieval Augmented Generation (RAG) framework utilizes a combination of parametric knowledge and external knowledge to demonstrate state-of-the-art performance on open-domain question answering tasks. However, the RAG framework suffers from performance degradation when the query is accompanied by irrelevant contexts. In this work, we propose the RE-RAG framework, which introduces a relevance estimator (RE) that not only provides relative relevance between contexts as previous rerankers did, but also provides confidence, which can be used to classify whether given context is useful for answering the given question. We propose a weakly supervised method for training the RE simply utilizing question-answer data without any labels for correct contexts. We show that RE trained with a small generator (sLM) can not only improve the sLM fine-tuned together with RE but also improve previously unreferenced large language models (LLMs). Furthermore, we investigate new decoding strategies that utilize the proposed confidence measured by RE such as choosing to let the user know that it is "unanswerable" to answer the question given the retrieved contexts or choosing to rely on LLM's parametric knowledge rather than unrelated contexts.
An Analysis under a Unified Fomulation of Learning Algorithms with Output Constraints
Song, Mooho, Lee, Jay-Yoon
Neural networks (NN) perform well in diverse tasks, but sometimes produce nonsensical results to humans. Most NN models "solely" learn from (input, output) pairs, occasionally conflicting with human knowledge. Many studies indicate injecting human knowledge by reducing output constraints during training can improve model performance and reduce constraint violations. While there have been several attempts to compare different existing algorithms under the same programming framework, nonetheless, there has been no previous work that categorizes learning algorithms with output constraints in a unified manner. Our contributions are as follows: (1) We categorize the previous studies based on three axes: type of constraint loss used (e.g. probabilistic soft logic, REINFORCE), exploration strategy of constraint-violating examples, and integration mechanism of learning signals from main task and constraint. (2) We propose new algorithms to integrate the information of main task and constraint injection, inspired by continual-learning algorithms. (3) Furthermore, we propose the $H\beta$-score as a metric for considering the main task metric and constraint violation simultaneously. To provide a thorough analysis, we examine all the algorithms on three NLP tasks: natural language inference (NLI), synthetic transduction examples (STE), and semantic role labeling (SRL). We explore and reveal the key factors of various algorithms associated with achieving high $H\beta$-scores.
Comparing Neighbors Together Makes it Easy: Jointly Comparing Multiple Candidates for Efficient and Effective Retrieval
Song, Jonghyun, Jin, Cheyon, Zhao, Wenlong, Lee, Jay-Yoon
A common retrieve-and-rerank paradigm involves retrieving a broad set of relevant candidates using a scalable bi-encoder, followed by expensive but more accurate cross-encoders to a limited candidate set. However, this small subset often leads to error propagation from the bi-encoders, thereby restricting the performance of the overall pipeline. To address these issues, we propose the Comparing Multiple Candidates (CMC) framework, which compares a query and multiple candidate embeddings jointly through shallow self-attention layers. While providing contextualized representations, CMC is scalable enough to handle multiple comparisons simultaneously, where comparing 2K candidates takes only twice as long as comparing 100. Practitioners can use CMC as a lightweight and effective reranker to improve top-1 accuracy. Moreover, when integrated with another retriever, CMC reranking can function as a virtually enhanced retriever. This configuration adds only negligible latency compared to using a single retriever (virtual), while significantly improving recall at K (enhanced).} Through experiments, we demonstrate that CMC, as a virtually enhanced retriever, significantly improves Recall@k (+6.7, +3.5%-p for R@16, R@64) compared to the initial retrieval stage on the ZeSHEL dataset. Meanwhile, we conduct experiments for direct reranking on entity, passage, and dialogue ranking. The results indicate that CMC is not only faster (11x) than cross-encoders but also often more effective, with improved prediction performance in Wikipedia entity linking (+0.7%-p) and DSTC7 dialogue ranking (+3.3%-p). The code and link to datasets are available at https://github.com/yc-song/cmc