Not enough data to create a plot.
Try a different view from the menu above.
Lee, Hyunwoo
Integrated Subset Selection and Bandwidth Estimation Algorithm for Geographically Weighted Regression
Lee, Hyunwoo, Park, Young Woong
This study proposes a mathematical programming-based algorithm for the integrated selection of variable subsets and bandwidth estimation in geographically weighted regression, a local regression method that allows the kernel bandwidth and regression coefficients to vary across study areas. Unlike standard approaches in the literature, in which bandwidth and regression parameters are estimated separately for each focal point on the basis of different criteria, our model uses a single objective function for the integrated estimation of regression and bandwidth parameters across all focal points, based on the regression likelihood function and variance modeling. The proposed model further integrates a procedure to select a single subset of independent variables for all focal points, whereas existing approaches may return heterogeneous subsets across focal points. We then propose an alternative direction method to solve the nonconvex mathematical model and show that it converges to a partial minimum. The computational experiment indicates that the proposed algorithm provides competitive explanatory power with stable spatially varying patterns, with the ability to select the best subset and account for additional constraints.
Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis
Lee, Hyunwoo, Choi, Hayoung, Kim, Hyunju
As a neural network's depth increases, it can achieve strong generalization performance. Training, however, becomes challenging due to gradient issues. Theoretical research and various methods have been introduced to address this issues. However, research on weight initialization methods that can be effectively applied to tanh neural networks of varying sizes still needs to be completed. This paper presents a novel weight initialization method for Feedforward Neural Networks with tanh activation function. Based on an analysis of the fixed points of the function $\tanh(ax)$, our proposed method aims to determine values of $a$ that prevent the saturation of activations. A series of experiments on various classification datasets demonstrate that the proposed method is more robust to network size variations than the existing method. Furthermore, when applied to Physics-Informed Neural Networks, the method exhibits faster convergence and robustness to variations of the network size compared to Xavier initialization in problems of Partial Differential Equations.
SLM as Guardian: Pioneering AI Safety with Small Language Models
Kwon, Ohjoon, Jeon, Donghyeon, Choi, Nayoung, Cho, Gyu-Hwung, Kim, Changbong, Lee, Hyunwoo, Kang, Inho, Kim, Sun, Park, Taiwoo
Most prior safety research of large language models (LLMs) has focused on enhancing the alignment of LLMs to better suit the safety requirements of humans. However, internalizing such safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness. To overcome such challenges, a modular approach employing a smaller LLM to detect harmful user queries is regarded as a convenient solution in designing LLM-based system with safety requirements. In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation. We introduce our safety requirements and the taxonomy of harmfulness categories, and then propose a multi-task learning mechanism fusing the two tasks into a single model. We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
Taxonomy and Analysis of Sensitive User Queries in Generative AI Search
Jo, Hwiyeol, Park, Taiwoo, Choi, Nayoung, Kim, Changbong, Kwon, Ohjoon, Jeon, Donghyeon, Lee, Hyunwoo, Lee, Eui-Hyeon, Shin, Kyoungho, Lim, Sun Suk, Kim, Kyungmi, Lee, Jihye, Kim, Sun
Although there has been a growing interest among industries to integrate generative LLMs into their services, limited experiences and scarcity of resources acts as a barrier in launching and servicing large-scale LLM-based conversational services. In this paper, we share our experiences in developing and operating generative AI models within a national-scale search engine, with a specific focus on the sensitiveness of user queries. We propose a taxonomy for sensitive search queries, outline our approaches, and present a comprehensive analysis report on sensitive queries from actual users.
Improved weight initialization for deep and narrow feedforward neural network
Lee, Hyunwoo, Kim, Yunho, Yang, Seungyeop, Choi, Hayoung
Appropriate weight initialization settings, along with the ReLU activation function, have been a cornerstone of modern deep learning, making it possible to train and deploy highly effective and efficient neural network models across diverse artificial intelligence. The problem of dying ReLU, where ReLU neurons become inactive and yield zero output, presents a significant challenge in the training of deep neural networks with ReLU activation function. Theoretical research and various methods have been introduced to address the problem. However, even with these methods and research, training remains challenging for extremely deep and narrow feedforward networks with ReLU activation function. In this paper, we propose a new weight initialization method to address this issue. We prove the properties of the proposed initial weight matrix and demonstrate how these properties facilitate the effective propagation of signal vectors. Through a series of experiments and comparisons with existing methods, we demonstrate the effectiveness of the new initialization method.
Predicting Time-to-conversion for Dementia of Alzheimer's Type using Multi-modal Deep Survival Analysis
Mirabnahrazam, Ghazal, Ma, Da, Beaulac, Cรฉdric, Lee, Sieun, Popuri, Karteek, Lee, Hyunwoo, Cao, Jiguo, Galvin, James E, Wang, Lei, Beg, Mirza Faisal, Initiative, the Alzheimer's Disease Neuroimaging
Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, but it is unclear how each factor contributes to disease progression. An in-depth examination of these factors may yield an accurate estimate of time-to-conversion to DAT for patients at various disease stages. We used 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data modalities in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We used a deep learning-based survival analysis model that extends the classic Cox regression model to predict time-to-conversion to DAT. Our findings showed that genetic features contributed the least to survival analysis, while CDC features contributed the most. Combining MRI and genetic features improved survival prediction over using either modality alone, but adding CDC to any combination of features only worked as well as using only CDC features. Consequently, our study demonstrated that using the current clinical procedure, which includes gathering cognitive test results, can outperform survival analysis results produced using costly genetic or CSF data.
Embedded Real-Time Fall Detection Using Deep Learning For Elderly Care
Lee, Hyunwoo, Kim, Jooyoung, Yang, Dojun, Kim, Joon-Ho
This paper proposes a real-time embedded fall detection system using a DVS(Dynamic Vision Sensor) that has never been used for traditional fall detection, a dataset for fall detection using that, and a DVS-TN(DVS-Temporal Network). The first contribution is building a DVS Falls Dataset, which made our network to recognize a much greater variety of falls than the existing datasets that existed before and solved privacy issues using the DVS. Secondly, we introduce the DVS-TN : optimized deep learning network to detect falls using DVS. Finally, we implemented a fall detection system which can run on low-computing H/W with real-time, and tested on DVS Falls Dataset that takes into account various falls situations. Our approach achieved 95.5% on the F1-score and operates at 31.25 FPS on NVIDIA Jetson TX1 board.