Lee, Hung-yi
Efficient Training of Self-Supervised Speech Foundation Models on a Compute Budget
Liu, Andy T., Lin, Yi-Cheng, Wu, Haibin, Winkler, Stefan, Lee, Hung-yi
Despite their impressive success, training foundation models remains computationally costly. This paper investigates how to efficiently train speech foundation models with self-supervised learning (SSL) under a limited compute budget. We examine critical factors in SSL that impact the budget, including model architecture, model size, and data size. Our goal is to make analytical steps toward understanding the training dynamics of speech foundation models. We benchmark SSL objectives in an entirely comparable setting and find that other factors contribute more significantly to the success of SSL. Our results show that slimmer model architectures outperform common small architectures under the same compute and parameter budget. We demonstrate that the size of the pre-training data remains crucial, even with data augmentation during SSL training, as performance suffers when iterating over limited data. Finally, we identify a trade-off between model size and data size, highlighting an optimal model size for a given compute budget.
SpeechCaps: Advancing Instruction-Based Universal Speech Models with Multi-Talker Speaking Style Captioning
Huang, Chien-yu, Shih, Min-Han, Lu, Ke-Han, Hsiao, Chi-Yuan, Lee, Hung-yi
Instruction-based speech processing is becoming popular. Studies show that training with multiple tasks boosts performance, but collecting diverse, large-scale tasks and datasets is expensive. Thus, it is highly desirable to design a fundamental task that benefits other downstream tasks. This paper introduces a multi-talker speaking style captioning task to enhance the understanding of speaker and prosodic information. We used large language models to generate descriptions for multi-talker speech. Then, we trained our model with pre-training on this captioning task followed by instruction tuning. Evaluation on Dynamic-SUPERB shows our model outperforming the baseline pre-trained only on single-talker tasks, particularly in speaker and emotion recognition. Additionally, tests on a multi-talker QA task reveal that current models struggle with attributes such as gender, pitch, and speaking rate. The code and dataset are available at https://github.com/cyhuang-tw/speechcaps.
Leave No Knowledge Behind During Knowledge Distillation: Towards Practical and Effective Knowledge Distillation for Code-Switching ASR Using Realistic Data
Tseng, Liang-Hsuan, Chen, Zih-Ching, Chang, Wei-Shun, Lee, Cheng-Kuang, Huang, Tsung-Ren, Lee, Hung-yi
Recent advances in automatic speech recognition (ASR) often rely on large speech foundation models for generating high-quality transcriptions. However, these models can be impractical due to limited computing resources. The situation is even more severe in terms of more realistic or difficult scenarios, such as code-switching ASR (CS-ASR). To address this, we present a framework for developing more efficient models for CS-ASR through knowledge distillation using realistic speech-only data. Our proposed method, Leave No Knowledge Behind During Knowledge Distillation (K$^2$D), leverages both the teacher model's knowledge and additional insights from a small auxiliary model. We evaluate our approach on two in-domain and two out-domain datasets, demonstrating that K$^2$D is effective. By conducting K$^2$D on the unlabeled realistic data, we have successfully obtained a 2-time smaller model with 5-time faster generation speed while outperforming the baseline methods and the teacher model on all the testing sets. We have made our model publicly available on Hugging Face (https://huggingface.co/andybi7676/k2d-whisper.zh-en).
Speech-Copilot: Leveraging Large Language Models for Speech Processing via Task Decomposition, Modularization, and Program Generation
Kuan, Chun-Yi, Yang, Chih-Kai, Huang, Wei-Ping, Lu, Ke-Han, Lee, Hung-yi
In this work, we introduce Speech-Copilot, a modular framework for instruction-oriented speech-processing tasks that minimizes human effort in toolset construction. Unlike end-to-end methods using large audio-language models, Speech-Copilot builds speech processing-specific toolsets by analyzing pre-collected task instructions and breaking tasks into manageable sub-tasks. It features a flexible agent based on large language models that performs tasks through program generation. Our approach achieves state-of-the-art performance on the Dynamic-SUPERB benchmark, demonstrating its effectiveness across diverse speech-processing tasks. Key contributions include: 1) developing an innovative framework for speech processing-specific toolset construction, 2) establishing a high-performing agent based on large language models, and 3) offering a new perspective on addressing challenging instruction-oriented speech-processing tasks. Without additional training processes required by end-to-end approaches, our method provides a flexible and extendable solution for a wide range of speech-processing applications.
Listen and Speak Fairly: A Study on Semantic Gender Bias in Speech Integrated Large Language Models
Lin, Yi-Cheng, Lin, Tzu-Quan, Yang, Chih-Kai, Lu, Ke-Han, Chen, Wei-Chih, Kuan, Chun-Yi, Lee, Hung-yi
Speech Integrated Large Language Models (SILLMs) combine large language models with speech perception to perform diverse tasks, such as emotion recognition to speaker verification, demonstrating universal audio understanding capability. However, these models may amplify biases present in training data, potentially leading to biased access to information for marginalized groups. This work introduces a curated spoken bias evaluation toolkit and corresponding dataset. We evaluate gender bias in SILLMs across four semantic-related tasks: speech-to-text translation (STT), spoken coreference resolution (SCR), spoken sentence continuation (SSC), and spoken question answering (SQA). Our analysis reveals that bias levels are language-dependent and vary with different evaluation methods. Our findings emphasize the necessity of employing multiple approaches to comprehensively assess biases in SILLMs, providing insights for developing fairer SILLM systems.
Do Prompts Really Prompt? Exploring the Prompt Understanding Capability of Whisper
Yang, Chih-Kai, Huang, Kuan-Po, Lee, Hung-yi
This research explores how the information of prompts interacts with the high-performing speech recognition model, Whisper. We compare its performances when prompted by prompts with correct information and those corrupted with incorrect information. Our results unexpectedly show that Whisper may not understand the textual prompts in a human-expected way. Additionally, we find that performance improvement is not guaranteed even with stronger adherence to the topic information in textual prompts. It is also noted that English prompts generally outperform Mandarin ones on datasets of both languages, likely due to differences in training data distributions for these languages despite the mismatch with pre-training scenarios. Conversely, we discover that Whisper exhibits awareness of misleading information in language tokens by ignoring incorrect language tokens and focusing on the correct ones. In sum, We raise insightful questions about Whisper's prompt understanding and reveal its counter-intuitive behaviors. We encourage further studies.
Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course
Chiang, Cheng-Han, Chen, Wei-Chih, Kuan, Chun-Yi, Yang, Chienchou, Lee, Hung-yi
Using large language models (LLMs) for automatic evaluation has become an important evaluation method in NLP research. However, it is unclear whether these LLM-based evaluators can be applied in real-world classrooms to assess student assignments. This empirical report shares how we use GPT-4 as an automatic assignment evaluator in a university course with 1,028 students. Based on student responses, we find that LLM-based assignment evaluators are generally acceptable to students when students have free access to these LLM-based evaluators. However, students also noted that the LLM sometimes fails to adhere to the evaluation instructions. Additionally, we observe that students can easily manipulate the LLM-based evaluator to output specific strings, allowing them to achieve high scores without meeting the assignment rubric. Based on student feedback and our experience, we provide several recommendations for integrating LLM-based evaluators into future classrooms.
Investigating the Effects of Large-Scale Pseudo-Stereo Data and Different Speech Foundation Model on Dialogue Generative Spoken Language Model
Fu, Yu-Kuan, Lee, Cheng-Kuang, Wang, Hsiu-Hsuan, Lee, Hung-yi
Recent efforts in Spoken Dialogue Modeling aim to synthesize spoken dialogue without the need for direct transcription, thereby preserving the wealth of non-textual information inherent in speech. However, this approach faces a challenge when speakers talk simultaneously, requiring stereo dialogue data with speakers recorded on separate channels, a notably scarce resource. To address this, we have developed an innovative pipeline capable of transforming single-channel dialogue data into pseudo-stereo data. This expanded our training dataset from a mere 2,000 to an impressive 17,600 hours, significantly enriching the diversity and quality of the training examples available. The inclusion of this pseudo-stereo data has proven to be effective in improving the performance of spoken dialogue language models. Additionally, we explored the use of discrete units of different speech foundation models for spoken dialogue generation.
DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment
Lu, Ke-Han, Chen, Zhehuai, Fu, Szu-Wei, Huang, He, Ginsburg, Boris, Wang, Yu-Chiang Frank, Lee, Hung-yi
Recent speech language models (SLMs) typically incorporate pre-trained speech models to extend the capabilities from large language models (LLMs). In this paper, we propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities, enabling SLMs to interpret and generate comprehensive natural language descriptions, thereby facilitating the capability to understand both linguistic and non-linguistic features in speech. Enhanced with the proposed approach, our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks. Moreover, we discover that the aligned model exhibits a zero-shot instruction-following capability without explicit speech instruction tuning. These findings highlight the potential to reshape instruction-following SLMs by incorporating rich, descriptive speech captions.
Can LLMs Understand the Implication of Emphasized Sentences in Dialogue?
Lin, Guan-Ting, Lee, Hung-yi
Emphasis is a crucial component in human communication, which indicates the speaker's intention and implication beyond pure text in dialogue. While Large Language Models (LLMs) have revolutionized natural language processing, their ability to understand emphasis in dialogue remains unclear. This paper introduces Emphasized-Talk, a benchmark with emphasis-annotated dialogue samples capturing the implications of emphasis. We evaluate various LLMs, both open-source and commercial, to measure their performance in understanding emphasis. Additionally, we propose an automatic evaluation pipeline using GPT-4, which achieves a high correlation with human rating. Our findings reveal that although commercial LLMs generally perform better, there is still significant room for improvement in comprehending emphasized sentences.