Goto

Collaborating Authors

 Lee, Hodong


HyperCLOVA X Technical Report

arXiv.org Artificial Intelligence

We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.


Visually-Situated Natural Language Understanding with Contrastive Reading Model and Frozen Large Language Models

arXiv.org Artificial Intelligence

Recent advances in Large Language Models (LLMs) have stimulated a surge of research aimed at extending their applications to the visual domain. While these models exhibit promise in generating abstract image captions and facilitating natural conversations, their performance on text-rich images still requires improvement. In this paper, we introduce Contrastive Reading Model (Cream), a novel neural architecture designed to enhance the language-image understanding capability of LLMs by capturing intricate details that are often overlooked in existing methods. Cream combines vision and auxiliary encoders, fortified by a contrastive feature alignment technique, to achieve a more effective comprehension of language information in visually situated contexts within the images. Our approach bridges the gap between vision and language understanding, paving the way for the development of more sophisticated Document Intelligence Assistants. Through rigorous evaluations across diverse visually-situated language understanding tasks that demand reasoning capabilities, we demonstrate the compelling performance of Cream, positioning it as a prominent model in the field of visual document understanding. We provide our codebase and newly-generated datasets at https://github.com/naver-ai/cream .