Lee, Dongjun
Learning to Contextualize Web Pages for Enhanced Decision Making by LLM Agents
Lee, Dongjun, Lee, Juyong, Kim, Kyuyoung, Tack, Jihoon, Shin, Jinwoo, Teh, Yee Whye, Lee, Kimin
Recent advances in large language models (LLMs) have led to a growing interest in developing LLM-based agents for automating web tasks. However, these agents often struggle with even simple tasks on real-world websites due to their limited capability to understand and process complex web page structures. In this work, we introduce LCoW, a framework for Learning language models to Contextualize complex Web pages into a more comprehensible form, thereby enhancing decision making by LLM agents. LCoW decouples web page understanding from decision making by training a separate contextualization module to transform complex web pages into comprehensible format, which are then utilized by the decision-making agent. We demonstrate that our contextualization module effectively integrates with LLM agents of various scales to significantly enhance their decision-making capabilities in web automation tasks. Notably, LCoW improves the success rates of closed-source LLMs (e.g., Gemini-1.5-flash, GPT-4o, Claude-3.5-Sonnet) by an average of 15.6%, and demonstrates a 23.7% average improvement in success rates for open-source LMs (e.g., Llama-3.1-8B, Llama-3.1-70B) on the WorkArena benchmark. Moreover, the Gemini-1.5-flash agent with LCoW achieves state-of-the-art results on the WebShop benchmark, outperforming human experts. The relevant code materials are available at our project page: https://lcowiclr2025.github.io.
Efficient Gradient-Based Inference for Manipulation Planning in Contact Factor Graphs
Lee, Jeongmin, Park, Sunkyung, Lee, Minji, Lee, Dongjun
This paper presents a framework designed to tackle a range of planning problems arise in manipulation, which typically involve complex geometric-physical reasoning related to contact and dynamic constraints. We introduce the Contact Factor Graph (CFG) to graphically model these diverse factors, enabling us to perform inference on the graphs to approximate the distribution and sample appropriate solutions. We propose a novel approach that can incorporate various phenomena of contact manipulation as differentiable factors, and develop an efficient inference algorithm for CFG that leverages this differentiability along with the conditional probabilities arising from the structured nature of contact. Our results demonstrate the capability of our framework in generating viable samples and approximating posterior distributions for various manipulation scenarios.
Variations of Augmented Lagrangian for Robotic Multi-Contact Simulation
Lee, Jeongmin, Lee, Minji, Park, Sunkyung, Yun, Jinhee, Lee, Dongjun
The multi-contact nonlinear complementarity problem (NCP) is a naturally arising challenge in robotic simulations. Achieving high performance in terms of both accuracy and efficiency remains a significant challenge, particularly in scenarios involving intensive contacts and stiff interactions. In this article, we introduce a new class of multi-contact NCP solvers based on the theory of the Augmented Lagrangian (AL). We detail how the standard derivation of AL in convex optimization can be adapted to handle multi-contact NCP through the iteration of surrogate problem solutions and the subsequent update of primal-dual variables. Specifically, we present two tailored variations of AL for robotic simulations: the Cascaded Newton-based Augmented Lagrangian (CANAL) and the Subsystem-based Alternating Direction Method of Multipliers (SubADMM). We demonstrate how CANAL can manage multi-contact NCP in an accurate and robust manner, while SubADMM offers superior computational speed, scalability, and parallelizability for high degrees-of-freedom multibody systems with numerous contacts. Our results showcase the effectiveness of the proposed solver framework, illustrating its advantages in various robotic manipulation scenarios.
Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models
Ko, Donggeun, Lee, Dongjun, Park, Namjun, Shim, Wonkyeong, Kim, Jaekwang
Neural networks struggle with image classification when biases are learned and misleads correlations, affecting their generalization and performance. Previous methods require attribute labels (e.g. background, color) or utilizes Generative Adversarial Networks (GANs) to mitigate biases. We introduce DiffuBias, a novel pipeline for text-to-image generation that enhances classifier robustness by generating bias-conflict samples, without requiring training during the generation phase. Utilizing pretrained diffusion and image captioning models, DiffuBias generates images that challenge the biases of classifiers, using the top-$K$ losses from a biased classifier ($f_B$) to create more representative data samples. This method not only debiases effectively but also boosts classifier generalization capabilities. To the best of our knowledge, DiffuBias is the first approach leveraging a stable diffusion model to generate bias-conflict samples in debiasing tasks. Our comprehensive experimental evaluations demonstrate that DiffuBias achieves state-of-the-art performance on benchmark datasets. We also conduct a comparative analysis of various generative models in terms of carbon emissions and energy consumption to highlight the significance of computational efficiency.
Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
Kang, Bong Gyun, Lee, Dongjun, Kim, HyunGi, Chung, DoHyun, Yoon, Sungroh
Sequence modeling faces challenges in capturing long-range dependencies across diverse tasks. Recent linear and transformer-based forecasters have shown superior performance in time series forecasting. However, they are constrained by their inherent inability to effectively address long-range dependencies in time series data, primarily due to using fixed-size inputs for prediction. Furthermore, they typically sacrifice essential temporal correlation among consecutive training samples by shuffling them into mini-batches. To overcome these limitations, we introduce a fast and effective Spectral Attention mechanism, which preserves temporal correlations among samples and facilitates the handling of long-range information while maintaining the base model structure. Spectral Attention preserves long-period trends through a low-pass filter and facilitates gradient to flow between samples. Spectral Attention can be seamlessly integrated into most sequence models, allowing models with fixed-sized look-back windows to capture long-range dependencies over thousands of steps. Through extensive experiments on 11 real-world time series datasets using 7 recent forecasting models, we consistently demonstrate the efficacy of our Spectral Attention mechanism, achieving state-of-the-art results.
Narrow Passage Path Planning using Collision Constraint Interpolation
Lee, Minji, Lee, Jeongmin, Lee, Dongjun
Narrow passage path planning is a prevalent problem from industrial to household sites, often facing difficulties in finding feasible paths or requiring excessive computational resources. Given that deep penetration into the environment can cause optimization failure, we propose a framework to ensure feasibility throughout the process using a series of subproblems tailored for narrow passage problem. We begin by decomposing the environment into convex objects and initializing collision constraints with a subset of these objects. By continuously interpolating the collision constraints through the process of sequentially introducing remaining objects, our proposed framework generates subproblems that guide the optimization toward solving the narrow passage problem. Several examples are presented to demonstrate how the proposed framework addresses narrow passage path planning problems.
A Comprehensive Survey of Time Series Forecasting: Architectural Diversity and Open Challenges
Kim, Jongseon, Kim, Hyungjoon, Kim, HyunGi, Lee, Dongjun, Yoon, Sungroh
Time series forecasting is a critical task that provides key information for decision-making across various fields. Recently, various fundamental deep learning architectures such as MLPs, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems. However, the structural limitations caused by the inductive biases of each deep learning architecture constrained their performance. Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting. However, recent research has shown that alternatives such as simple linear layers can outperform Transformers. These findings have opened up new possibilities for using diverse architectures. In this context of exploration into various models, the architectural modeling of time series forecasting has now entered a renaissance. This survey not only provides a historical context for time series forecasting but also offers comprehensive and timely analysis of the movement toward architectural diversification. By comparing and re-examining various deep learning models, we uncover new perspectives and presents the latest trends in time series forecasting, including the emergence of hybrid models, diffusion models, Mamba models, and foundation models. By focusing on the inherent characteristics of time series data, we also address open challenges that have gained attention in time series forecasting, such as channel dependency, distribution shift, causality, and feature extraction. This survey explores vital elements that can enhance forecasting performance through diverse approaches. These contributions lead to lowering the entry barriers for newcomers to the field of time series forecasting, while also offering seasoned researchers broad perspectives, new opportunities, and deep insights.
DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection
Ko, Donggeun, Jo, Sangwoo, Lee, Dongjun, Park, Namjun, Kim, Jaekwang
Dataset bias is a significant challenge in machine learning, where specific attributes, such as texture or color of the images are unintentionally learned resulting in detrimental performance. To address this, previous efforts have focused on debiasing models either by developing novel debiasing algorithms or by generating synthetic data to mitigate the prevalent dataset biases. However, generative approaches to date have largely relied on using bias-specific samples from the dataset, which are typically too scarce. In this work, we propose, DiffInject, a straightforward yet powerful method to augment synthetic bias-conflict samples using a pretrained diffusion model. This approach significantly advances the use of diffusion models for debiasing purposes by manipulating the latent space. Our framework does not require any explicit knowledge of the bias types or labelling, making it a fully unsupervised setting for debiasing. Our methodology demonstrates substantial result in effectively reducing dataset bias.
MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation
Lee, Dongjun, Park, Choongwon, Kim, Jaehyuk, Park, Heesoo
Recent advancements in large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to-SQL tasks. However, their performance is still considerably lower than that of human experts on benchmarks that include complex schemas and queries, such as BIRD. This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers and effectively aggregate them. Specifically, we robustly refine the database schema through schema linking using multiple prompts. Thereafter, we generate various candidate SQL queries based on the refined schema and diverse prompts. Finally, the candidate queries are filtered based on their confidence scores, and the optimal query is obtained through a multiple-choice selection that is presented to the LLM. When evaluated on the BIRD and Spider benchmarks, the proposed method achieved execution accuracies of 65.5\% and 89.6\%, respectively, significantly outperforming previous ICL-based methods. Moreover, we established a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
Gradient Alignment with Prototype Feature for Fully Test-time Adaptation
Shin, Juhyeon, Lee, Jonghyun, Lee, Saehyung, Park, Minjun, Lee, Dongjun, Hwang, Uiwon, Yoon, Sungroh
TTA guidance from entropy minimization focuses on adapting a model during the inference phase, using loss from misclassified pseudo label. We developed only the test data that is streamed online, without access to a gradient alignment loss to precisely manage the training data or test labels. Common strategies employed in adaptation process, ensuring that changes made for TTA include objectives like entropy minimization [Wang et al., some data don't negatively impact the model's performance 2021] or cross-entropy with pseudo-labels [Goyal et al., 2022], on other data. We introduce a prototype designed to guide the model's self-supervision. However, feature of a class as a proxy measure of the negative these methods are susceptible to confirmation bias [Arazo et impact. To make GAP regularizer feasible under al., 2020], where data with noisy predictions can lead the the TTA constraints, where model can only access model to continually learn in the wrong direction.