Goto

Collaborating Authors

 Lee, Chul-Ho


M$^3$-Impute: Mask-guided Representation Learning for Missing Value Imputation

arXiv.org Artificial Intelligence

Missing values are a common problem that poses significant challenges to data analysis and machine learning. This problem necessitates the development of an effective imputation method to fill in the missing values accurately, thereby enhancing the overall quality and utility of the datasets. Existing imputation methods, however, fall short of explicitly considering the `missingness' information in the data during the embedding initialization stage and modeling the entangled feature and sample correlations during the learning process, thus leading to inferior performance. We propose M$^3$-Impute, which aims to explicitly leverage the missingness information and such correlations with novel masking schemes. M$^3$-Impute first models the data as a bipartite graph and uses a graph neural network to learn node embeddings, where the refined embedding initialization process directly incorporates the missingness information. They are then optimized through M$^3$-Impute's novel feature correlation unit (FRU) and sample correlation unit (SRU) that effectively captures feature and sample correlations for imputation. Experiment results on 25 benchmark datasets under three different missingness settings show the effectiveness of M$^3$-Impute by achieving 20 best and 4 second-best MAE scores on average.


CATGNN: Cost-Efficient and Scalable Distributed Training for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph neural networks have been shown successful in recent years. While different GNN architectures and training systems have been developed, GNN training on large-scale real-world graphs still remains challenging. Existing distributed systems load the entire graph in memory for graph partitioning, requiring a huge memory space to process large graphs and thus hindering GNN training on such large graphs using commodity workstations. In this paper, we propose CATGNN, a cost-efficient and scalable distributed GNN training system which focuses on scaling GNN training to billion-scale or larger graphs under limited computational resources. Among other features, it takes a stream of edges as input, instead of loading the entire graph in memory, for partitioning. We also propose a novel streaming partitioning algorithm named SPRING for distributed GNN training. We verify the correctness and effectiveness of CATGNN with SPRING on 16 open datasets. In particular, we demonstrate that CATGNN can handle the largest publicly available dataset with limited memory, which would have been infeasible without increasing the memory space. SPRING also outperforms state-of-the-art partitioning algorithms significantly, with a 50% reduction in replication factor on average.


FIS-ONE: Floor Identification System with One Label for Crowdsourced RF Signals

arXiv.org Artificial Intelligence

Floor labels of crowdsourced RF signals are crucial for many smart-city applications, such as multi-floor indoor localization, geofencing, and robot surveillance. To build a prediction model to identify the floor number of a new RF signal upon its measurement, conventional approaches using the crowdsourced RF signals assume that at least few labeled signal samples are available on each floor. In this work, we push the envelope further and demonstrate that it is technically feasible to enable such floor identification with only one floor-labeled signal sample on the bottom floor while having the rest of signal samples unlabeled. We propose FIS-ONE, a novel floor identification system with only one labeled sample. FIS-ONE consists of two steps, namely signal clustering and cluster indexing. We first build a bipartite graph to model the RF signal samples and obtain a latent representation of each node (each signal sample) using our attention-based graph neural network model so that the RF signal samples can be clustered more accurately. Then, we tackle the problem of indexing the clusters with proper floor labels, by leveraging the observation that signals from an access point can be detected on different floors, i.e., signal spillover. Specifically, we formulate a cluster indexing problem as a combinatorial optimization problem and show that it is equivalent to solving a traveling salesman problem, whose (near-)optimal solution can be found efficiently. We have implemented FIS-ONE and validated its effectiveness on the Microsoft dataset and in three large shopping malls. Our results show that FIS-ONE outperforms other baseline algorithms significantly, with up to 23% improvement in adjusted rand index and 25% improvement in normalized mutual information using only one floor-labeled signal sample.