Goto

Collaborating Authors

 Lee, Chia-Ming


3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results

arXiv.org Artificial Intelligence

The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.


Real-Time Compressed Sensing for Joint Hyperspectral Image Transmission and Restoration for CubeSat

arXiv.org Artificial Intelligence

This paper addresses the challenges associated with hyperspectral image (HSI) reconstruction from miniaturized satellites, which often suffer from stripe effects and are computationally resource-limited. We propose a Real-Time Compressed Sensing (RTCS) network designed to be lightweight and require only relatively few training samples for efficient and robust HSI reconstruction in the presence of the stripe effect and under noisy transmission conditions. The RTCS network features a simplified architecture that reduces the required training samples and allows for easy implementation on integer-8-based encoders, facilitating rapid compressed sensing for stripe-like HSI, which exactly matches the moderate design of miniaturized satellites on push broom scanning mechanism. This contrasts optimization-based models that demand high-precision floating-point operations, making them difficult to deploy on edge devices. Our encoder employs an integer-8-compatible linear projection for stripe-like HSI data transmission, ensuring real-time compressed sensing. Furthermore, based on the novel two-streamed architecture, an efficient HSI restoration decoder is proposed for the receiver side, allowing for edge-device reconstruction without needing a sophisticated central server. This is particularly crucial as an increasing number of miniaturized satellites necessitates significant computing resources on the ground station. Extensive experiments validate the superior performance of our approach, offering new and vital capabilities for existing miniaturized satellite systems.


A Closer Look at Spatial-Slice Features Learning for COVID-19 Detection

arXiv.org Artificial Intelligence

Conventional Computed Tomography (CT) imaging recognition faces two significant challenges: (1) There is often considerable variability in the resolution and size of each CT scan, necessitating strict requirements for the input size and adaptability of models. (2) CT-scan contains large number of out-of-distribution (OOD) slices. The crucial features may only be present in specific spatial regions and slices of the entire CT scan. How can we effectively figure out where these are located? To deal with this, we introduce an enhanced Spatial-Slice Feature Learning (SSFL++) framework specifically designed for CT scan. It aim to filter out a OOD data within whole CT scan, enabling our to select crucial spatial-slice for analysis by reducing 70% redundancy totally. Meanwhile, we proposed Kernel-Density-based slice Sampling (KDS) method to improve the stability when training and inference stage, therefore speeding up the rate of convergence and boosting performance. As a result, the experiments demonstrate the promising performance of our model using a simple EfficientNet-2D (E2D) model, even with only 1% of the training data. The efficacy of our approach has been validated on the COVID-19-CT-DB datasets provided by the DEF-AI-MIA workshop, in conjunction with CVPR 2024. Our source code is available at https://github.com/ming053l/E2D


DRCT: Saving Image Super-resolution away from Information Bottleneck

arXiv.org Artificial Intelligence

In recent years, Vision Transformer-based approaches for low-level vision tasks have achieved widespread success. Unlike CNN-based models, Transformers are more adept at capturing long-range dependencies, enabling the reconstruction of images utilizing non-local information. In the domain of super-resolution, Swin-transformer-based models have become mainstream due to their capability of global spatial information modeling and their shifting-window attention mechanism that facilitates the interchange of information between different windows. Many researchers have enhanced model performance by expanding the receptive fields or designing meticulous networks, yielding commendable results. However, we observed that it is a general phenomenon for the feature map intensity to be abruptly suppressed to small values towards the network's end. This implies an information bottleneck and a diminishment of spatial information, implicitly limiting the model's potential. To address this, we propose the Dense-residual-connected Transformer (DRCT), aimed at mitigating the loss of spatial information and stabilizing the information flow through dense-residual connections between layers, thereby unleashing the model's potential and saving the model away from information bottleneck. Experiment results indicate that our approach surpasses state-of-the-art methods on benchmark datasets and performs commendably at the NTIRE-2024 Image Super-Resolution (x4) Challenge. Our source code is available at https://github.com/ming053l/DRCT


Progressive Alignment with VLM-LLM Feature to Augment Defect Classification for the ASE Dataset

arXiv.org Artificial Intelligence

Traditional defect classification approaches are facing with two barriers. (1) Insufficient training data and unstable data quality. Collecting sufficient defective sample is expensive and time-costing, consequently leading to dataset variance. It introduces the difficulty on recognition and learning. (2) Over-dependence on visual modality. When the image pattern and texture is monotonic for all defect classes in a given dataset, the performance of conventional AOI system cannot be guaranteed. In scenarios where image quality is compromised due to mechanical failures or when defect information is inherently difficult to discern, the performance of deep models cannot be guaranteed. A main question is, "how to solve those two problems when they occur at the same time?" The feasible strategy is to explore another feature within dataset and combine an eminent vision-language model (VLM) and Large-Language model (LLM) with their astonishing zero-shot capability. In this work, we propose the special ASE dataset, including rich data description recorded on image, for defect classification, but the defect feature is uneasy to learn directly. Secondly, We present the prompting for VLM-LLM against defect classification with the proposed ASE dataset to activate extra-modality feature from images to enhance performance. Then, We design the novel progressive feature alignment (PFA) block to refine image-text feature to alleviate the difficulty of alignment under few-shot scenario. Finally, the proposed Cross-modality attention fusion (CMAF) module can effectively fuse different modality feature. Experiment results have demonstrated our method's effectiveness over several defect classification methods for the ASE dataset.


OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System

arXiv.org Artificial Intelligence

Automatic optical inspection (AOI) plays a pivotal role in the manufacturing process, predominantly leveraging high-resolution imaging instruments for scanning purposes. It detects anomalies by analyzing image textures or patterns, making it an essential tool in industrial manufacturing and quality control. Despite its importance, the deployment of models for AOI often faces challenges. These include limited sample sizes, which hinder effective feature learning, variations among source domains, and sensitivities to changes in lighting and camera positions during imaging. These factors collectively compromise the accuracy of model predictions. Traditional AOI often fails to capitalize on the rich mechanism-parameter information from machines or inside images, including statistical parameters, which typically benefit AOI classification. To address this, we introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images as a second modality to enhance performance, termed OANet (Ocr-Aoi-Net). A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network. This synergy enables a more refined fusion of semantic representations from different modalities. We further introduce feature refinement and a gating function in our OANet to optimize the combination of these features, enhancing inference and decision-making capabilities. Experimental outcomes show that our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.


Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection

arXiv.org Artificial Intelligence

This study explores the use of deep learning techniques for analyzing lung Computed Tomography (CT) images. Classic deep learning approaches face challenges with varying slice counts and resolutions in CT images, a diversity arising from the utilization of assorted scanning equipment. Typically, predictions are made on single slices which are then combined for a comprehensive outcome. Yet, this method does not incorporate learning features specific to each slice, leading to a compromise in effectiveness. To address these challenges, we propose an advanced Spatial-Slice Feature Learning (SSFL++) framework specifically tailored for CT scans. It aims to filter out out-of-distribution (OOD) data within the entire CT scan, allowing us to select essential spatial-slice features for analysis by reducing data redundancy by 70\%. Additionally, we introduce a Kernel-Density-based slice Sampling (KDS) method to enhance stability during training and inference phases, thereby accelerating convergence and enhancing overall performance. Remarkably, our experiments reveal that our model achieves promising results with a simple EfficientNet-2D (E2D) model. The effectiveness of our approach is confirmed on the COVID-19-CT-DB datasets provided by the DEF-AI-MIA workshop.