Leblay, Julien
A Declarative Approach to Data-Driven Fact Checking
Leblay, Julien (Artificial Intelligence Research Center, AIST)
Fact checking is an essential part of any investigative work. For linguistic, psychological and social reasons, it is an inherently human task. Yet, modern media make it increasingly difficult for experts to keep up with the pace at which information is produced. Hence, we believe there is value in tools to assist them in this process. Much of the effort on Web data research has been focused on coping with incompleteness and uncertainty. Comparatively, dealing with context has received less attention, although it is crucial in judging the validity of a claim. For instance, what holds true in a US state, might not in its neighbors, e.g., due to obsolete or superseded laws. In this work, we address the problem of checking the validity of claims in multiple contexts. We define a language to represent and query facts across different dimensions. The approach is non-intrusive and allows relatively easy modeling, while capturing incompleteness and uncertainty. We describe the syntax and semantics of the language. We present algorithms to demonstrate its feasibility, and we illustrate its usefulness through examples.
RDFViewS: A Storage Tuning Wizard for RDF Applications
Goasdoué, François, Karanasos, Konstantinos, Leblay, Julien, Manolescu, Ioana
In recent years, the significant growth of RDF data used in numerous applications has made its efficient and scalable manipulation an important issue. In this paper, we present RDFViewS, a system capable of choosing the most suitable views to materialize, in order to minimize the query response time for a specific SPARQL query workload, while taking into account the view maintenance cost and storage space constraints. Our system employs practical algorithms and heuristics to navigate through the search space of potential view configurations, and exploits the possibly available semantic information - expressed via an RDF Schema - to ensure the completeness of the query evaluation.