Le-Phuoc, Danh
A comparison of extended object tracking with multi-modal sensors in indoor environment
Shuai, Jiangtao, Baerveldt, Martin, Nguyen-Duc, Manh, Le-Tuan, Anh, Hauswirth, Manfred, Le-Phuoc, Danh
This paper presents a preliminary study of an efficient object tracking approach, comparing the performance of two different 3D point cloud sensory sources: LiDAR and stereo cameras, which have significant price differences. In this preliminary work, we focus on single object tracking. We first developed a fast heuristic object detector that utilizes prior information about the environment and target. The resulting target points are subsequently fed into an extended object tracking framework, where the target shape is parameterized using a star-convex hypersurface model. Experimental results show that our object tracking method using a stereo camera achieves performance similar to that of a LiDAR sensor, with a cost difference of more than tenfold.
Overcoming Catastrophic Forgetting in Federated Class-Incremental Learning via Federated Global Twin Generator
Nguyen, Thinh, Doan, Khoa D, Nguyen, Binh T., Le-Phuoc, Danh, Wong, Kok-Seng
Federated Class-Incremental Learning (FCIL) increasingly becomes important in the decentralized setting, where it enables multiple participants to collaboratively train a global model to perform well on a sequence of tasks without sharing their private data. In FCIL, conventional Federated Learning algorithms such as FedAVG often suffer from catastrophic forgetting, resulting in significant performance declines on earlier tasks. Recent works, based on generative models, produce synthetic images to help mitigate this issue across all classes, but these approaches' testing accuracy on previous classes is still much lower than recent classes, i.e., having better plasticity than stability. To overcome these issues, this paper presents Federated Global Twin Generator (FedGTG), an FCIL framework that exploits privacy-preserving generative-model training on the global side without accessing client data. Specifically, the server trains a data generator and a feature generator to create two types of information from all seen classes, and then it sends the synthetic data to the client side. The clients then use feature-direction-controlling losses to make the local models retain knowledge and learn new tasks well. We extensively analyze the robustness of FedGTG on natural images, as well as its ability to converge to flat local minima and achieve better-predicting confidence (calibration). Experimental results on CIFAR-10, CIFAR-100, and tiny-ImageNet demonstrate the improvements in accuracy and forgetting measures of FedGTG compared to previous frameworks.
Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective
Le, Khiem, Luong-Ha, Nhan, Nguyen-Duc, Manh, Le-Phuoc, Danh, Do, Cuong, Wong, Kok-Seng
Federated Learning (FL) is a promising paradigm that offers significant advancements in privacy-preserving, decentralized machine learning by enabling collaborative training of models across distributed devices without centralizing data. However, the practical deployment of FL systems faces a significant bottleneck: the communication overhead caused by frequently exchanging large model updates between numerous devices and a central server. This communication inefficiency can hinder training speed, model performance, and the overall feasibility of real-world FL applications. In this survey, we investigate various strategies and advancements made in communication-efficient FL, highlighting their impact and potential to overcome the communication challenges inherent in FL systems. Specifically, we define measures for communication efficiency, analyze sources of communication inefficiency in FL systems, and provide a taxonomy and comprehensive review of state-of-the-art communication-efficient FL methods. Additionally, we discuss promising future research directions for enhancing the communication efficiency of FL systems. By addressing the communication bottleneck, FL can be effectively applied and enable scalable and practical deployment across diverse applications that require privacy-preserving, decentralized machine learning, such as IoT, healthcare, or finance.
Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization
Le, Khiem, Ho, Long, Do, Cuong, Le-Phuoc, Danh, Wong, Kok-Seng
Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains. Federated Domain Generalization (FedDG) attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift. However, most existing FedDG methods either cause additional privacy risks of data leakage or induce significant costs in client communication and computation, which are major concerns in the Federated Learning paradigm. To circumvent these challenges, here we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer. In particular, we carefully design Personalized eXplicitly Assembled Normalization to enforce client models selectively filtering domain-specific features that are biased towards local data while retaining discrimination of those features. Then, we incorporate a simple yet effective regularizer to guide these models in directly capturing domain-invariant representations that the global model's classifier can leverage. Extensive experimental results on two benchmark datasets, i.e., PACS and Office-Home, and a real-world medical dataset, Camelyon17, indicate that our proposed method outperforms other existing methods in addressing this particular problem.
Temporal Saliency Detection Towards Explainable Transformer-based Timeseries Forecasting
Duong-Trung, Nghia, Nguyen, Duc-Manh, Le-Phuoc, Danh
Despite the notable advancements in numerous Transformer-based models, the task of long multi-horizon time series forecasting remains a persistent challenge, especially towards explainability. Focusing on commonly used saliency maps in explaining DNN in general, our quest is to build attention-based architecture that can automatically encode saliency-related temporal patterns by establishing connections with appropriate attention heads. Hence, this paper introduces Temporal Saliency Detection (TSD), an effective approach that builds upon the attention mechanism and applies it to multi-horizon time series prediction. While our proposed architecture adheres to the general encoder-decoder structure, it undergoes a significant renovation in the encoder component, wherein we incorporate a series of information contracting and expanding blocks inspired by the U-Net style architecture. The TSD approach facilitates the multiresolution analysis of saliency patterns by condensing multi-heads, thereby progressively enhancing the forecasting of complex time series data. Empirical evaluations illustrate the superiority of our proposed approach compared to other models across multiple standard benchmark datasets in diverse far-horizon forecasting settings. The initial TSD achieves substantial relative improvements of 31% and 46% over several models in the context of multivariate and univariate prediction. We believe the comprehensive investigations presented in this study will offer valuable insights and benefits to future research endeavors.
An Empirical Study of Federated Learning on IoT-Edge Devices: Resource Allocation and Heterogeneity
Wong, Kok-Seng, Nguyen-Duc, Manh, Le-Huy, Khiem, Ho-Tuan, Long, Do-Danh, Cuong, Le-Phuoc, Danh
Nowadays, billions of phones, IoT and edge devices around the world generate data continuously, enabling many Machine Learning (ML)-based products and applications. However, due to increasing privacy concerns and regulations, these data tend to reside on devices (clients) instead of being centralized for performing traditional ML model training. Federated Learning (FL) is a distributed approach in which a single server and multiple clients collaboratively build an ML model without moving data away from clients. Whereas existing studies on FL have their own experimental evaluations, most experiments were conducted using a simulation setting or a small-scale testbed. This might limit the understanding of FL implementation in realistic environments. In this empirical study, we systematically conduct extensive experiments on a large network of IoT and edge devices (called IoT-Edge devices) to present FL real-world characteristics, including learning performance and operation (computation and communication) costs. Moreover, we mainly concentrate on heterogeneous scenarios, which is the most challenging issue of FL. By investigating the feasibility of on-device implementation, our study provides valuable insights for researchers and practitioners, promoting the practicality of FL and assisting in improving the current design of real FL systems.
Fantastic Data and How to Query Them
Tran, Trung-Kien, Le-Tuan, Anh, Nguyen-Duc, Manh, Yuan, Jicheng, Le-Phuoc, Danh
It is commonly acknowledged that the availability of the huge amount of (training) data is one of the most important factors for many recent advances in Artificial Intelligence (AI). However, datasets are often designed for specific tasks in narrow AI sub areas and there is no unified way to manage and access them. This not only creates unnecessary overheads when training or deploying Machine Learning models but also limits the understanding of the data, which is very important for data-centric AI. In this paper, we present our vision about a unified framework for different datasets so that they can be integrated and queried easily, e.g., using standard query languages. We demonstrate this in our ongoing work to create a framework for datasets in Computer Vision and show its advantages in different scenarios.