Goto

Collaborating Authors

 Le, Thanh


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


The Dynamical Gaussian Process Latent Variable Model in the Longitudinal Scenario

arXiv.org Machine Learning

The Dynamical Gaussian Process Latent Variable Models provide an elegant non-parametric framework for learning the low dimensional representations of the high-dimensional time-series. Real world observational studies, however, are often ill-conditioned: the observations can be noisy, not assuming the luxury of relatively complete and equally spaced like those in time series. Such conditions make it difficult to learn reasonable representations in the high dimensional longitudinal data set by way of Gaussian Process Latent Variable Model as well as other dimensionality reduction procedures. In this study, we approach the inference of Gaussian Process Dynamical Systems in Longitudinal scenario by augmenting the bound in the variational approximation to include systematic samples of the unseen observations. We demonstrate the usefulness of this approach on synthetic as well as the human motion capture data set.