Goto

Collaborating Authors

 Lazzaro, John


A Micropower Analog VLSI HMM State Decoder for Wordspotting

Neural Information Processing Systems

We describe the implementation of a hidden Markov model state decoding system, a component for a wordspotting speech recognition system.The key specification for this state decoder design is microwatt power dissipation; this requirement led to a continuoustime, analogcircuit implementation. We characterize the operation of a 10-word (81 state) state decoder test chip.


A Micropower Analog VLSI HMM State Decoder for Wordspotting

Neural Information Processing Systems

We describe the implementation of a hidden Markov model state decoding system, a component for a wordspotting speech recognition system. The key specification for this state decoder design is microwatt power dissipation; this requirement led to a continuoustime, analog circuit implementation. We characterize the operation of a 10-word (81 state) state decoder test chip.


Silicon Models for Auditory Scene Analysis

Neural Information Processing Systems

We are developing special-purpose, low-power analog-to-digital converters for speech and music applications, that feature analog circuit models of biological audition to process the audio signal before conversion. This paper describes our most recent converter design, and a working system that uses several copies ofthe chip to compute multiple representations of sound from an analog input. This multi-representation system demonstrates the plausibility of inexpensively implementing an auditory scene analysis approach to sound processing. 1. INTRODUCTION The visual system computes multiple representations of the retinal image, such as motion, orientation, and stereopsis, as an early step in scene analysis. Likewise, the auditory brainstem computes secondary representations of sound, emphasizing properties such as binaural disparity, periodicity, and temporal onsets. Recent research in auditory scene analysis involves using computational models of these auditory brainstem representations in engineering applications. Computation is a major limitation in auditory scene analysis research: the complete auditoryprocessing system described in (Brown and Cooke, 1994) operates at approximately 4000 times real time, running under UNIX on a Sun SPARCstation 1. Standard approaches to hardware acceleration for signal processing algorithms could be used to ease this computational burden in a research environment; a variety of parallel, fixed-point hardware products would work well on these algorithms.


Silicon Models for Auditory Scene Analysis

Neural Information Processing Systems

We are developing special-purpose, low-power analog-to-digital converters for speech and music applications, that feature analog circuit models of biological audition to process the audio signal before conversion. This paper describes our most recent converter design, and a working system that uses several copies ofthe chip to compute multiple representations of sound from an analog input. This multi-representation system demonstrates the plausibility of inexpensively implementing an auditory scene analysis approach to sound processing. 1. INTRODUCTION The visual system computes multiple representations of the retinal image, such as motion, orientation, and stereopsis, as an early step in scene analysis. Likewise, the auditory brainstem computes secondary representations of sound, emphasizing properties such as binaural disparity, periodicity, and temporal onsets. Recent research in auditory scene analysis involves using computational models of these auditory brainstem representations in engineering applications. Computation is a major limitation in auditory scene analysis research: the complete auditory processing system described in (Brown and Cooke, 1994) operates at approximately 4000 times real time, running under UNIX on a Sun SPARCstation 1. Standard approaches to hardware acceleration for signal processing algorithms could be used to ease this computational burden in a research environment; a variety of parallel, fixed-point hardware products would work well on these algorithms.




Temporal Adaptation in a Silicon Auditory Nerve

Neural Information Processing Systems

Many auditory theorists consider the temporal adaptation of the auditory nerve a key aspect of speech coding in the auditory periphery. Experiments with models of auditory localization and pitch perception also suggest temporal adaptation is an important element of practical auditory processing. I have designed, fabricated, and successfully tested an analog integrated circuit that models many aspects of auditory nerve response, including temporal adaptation.


Temporal Adaptation in a Silicon Auditory Nerve

Neural Information Processing Systems

Many auditory theorists consider the temporal adaptation of the auditory nerve a key aspect of speech coding in the auditory periphery. Experimentswith models of auditory localization and pitch perception also suggest temporal adaptation is an important element ofpractical auditory processing. I have designed, fabricated, and successfully tested an analog integrated circuit that models many aspects of auditory nerve response, including temporal adaptation. 1. INTRODUCTION We are modeling known and proposed auditory structures in the brain using analog VLSI circuits, with the goal of making contributions both to engineering practice andbiological understanding. Computational neuroscience involves modeling biology at many levels of abstraction. The first silicon auditory models were constructed ata fairly high level of abstraction (Lyon and Mead, 1988; Lazzaro and Mead, 1989ab; Mead et al., 1991; Lyon, 1991). The functional limitations of these silicon systems have prompted a new generation of auditory neural circuits designed at a lower level of abstraction (Watts et al., 1991; Liu et -al., 1991).


A Delay-Line Based Motion Detection Chip

Neural Information Processing Systems

Inspired by a visual motion detection model for the ra.bbit retina and by a computational architecture used for early audition in the barn owl, we have designed a chip that employs a correlation model to report the one-dimensional field motion of a scene in real time. Using subthreshold analog VLSI techniques, we have fabricated and successfully tested a 8000 transistor chip using a standard MOSIS process.


A Delay-Line Based Motion Detection Chip

Neural Information Processing Systems

Inspired by a visual motion detection model for the ra.bbit retina and by a computational architecture used for early audition in the barn owl, we have designed a chip that employs a correlation model to report the one-dimensional field motion of a scene in real time. Using subthreshold analog VLSI techniques, we have fabricated and successfully tested a 8000 transistor chip using a standard MOSIS process.