Lau, Ka Hei Carrie
CUIfy the XR: An Open-Source Package to Embed LLM-powered Conversational Agents in XR
Buldu, Kadir Burak, Özdel, Süleyman, Lau, Ka Hei Carrie, Wang, Mengdi, Saad, Daniel, Schönborn, Sofie, Boch, Auxane, Kasneci, Enkelejda, Bozkir, Efe
Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering consumer-grade head-mounted displays (HMDs) in an affordable way, it is likely that XR will become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as technological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)--powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. In this paper, we provide the community with an open-source, customizable, extensible, and privacy-aware Unity package, CUIfy, that facilitates speech-based NPC-user interaction with various LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes the latency between different computational models through streaming to achieve usable interactions between users and NPCs. We publish our source code in the following repository: https://gitlab.lrz.de/hctl/cuify
Embedding Large Language Models into Extended Reality: Opportunities and Challenges for Inclusion, Engagement, and Privacy
Bozkir, Efe, Özdel, Süleyman, Lau, Ka Hei Carrie, Wang, Mengdi, Gao, Hong, Kasneci, Enkelejda
Recent developments in computer graphics, hardware, artificial intelligence (AI), and human-computer interaction likely lead to extended reality (XR) devices and setups being more pervasive. While these devices and setups provide users with interactive, engaging, and immersive experiences with different sensing modalities, such as eye and hand trackers, many non-player characters are utilized in a pre-scripted way or by conventional AI techniques. In this paper, we argue for using large language models (LLMs) in XR by embedding them in virtual avatars or as narratives to facilitate more inclusive experiences through prompt engineering according to user profiles and fine-tuning the LLMs for particular purposes. We argue that such inclusion will facilitate diversity for XR use. In addition, we believe that with the versatile conversational capabilities of LLMs, users will engage more with XR environments, which might help XR be more used in everyday life. Lastly, we speculate that combining the information provided to LLM-powered environments by the users and the biometric data obtained through the sensors might lead to novel privacy invasions. While studying such possible privacy invasions, user privacy concerns and preferences should also be investigated. In summary, despite some challenges, embedding LLMs into XR is a promising and novel research area with several opportunities.