Larsen, Kristoffer
A Staged Approach using Machine Learning and Uncertainty Quantification to Predict the Risk of Hip Fracture
Shaik, Anjum, Larsen, Kristoffer, Lane, Nancy E., Zhao, Chen, Su, Kuan-Jui, Keyak, Joyce H., Tian, Qing, Sha, Qiuying, Shen, Hui, Deng, Hong-Wen, Zhou, Weihua
Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, and Health Research Institute, Michigan Technological University, Houghton, MI 49931 # Anjum Shaik and Kristoffer Larsen contribute equally. Abstract Page ABSTRACT Hip fractures present a significant healthcare challenge, especially within aging populations, where they are often caused by falls. These fractures lead to substantial morbidity and mortality, emphasizing the need for timely surgical intervention. Despite advancements in medical care, hip fractures impose a significant burden on individuals and healthcare systems. This paper focuses on the prediction of hip fracture risk in older and middle-aged adults, where falls and compromised bone quality are predominant factors. We propose a novel staged model that combines advanced imaging and clinical data to improve predictive performance. By using convolutional neural networks (CNNs) to extract features from hip DXA images, along with clinical variables, shape measurements, and texture features, our method provides a comprehensive framework for assessing fracture risk. The study cohort included 547 patients, with 94 experiencing hip fracture. A staged machine learning-based model was developed using two ensemble models: Ensemble 1 (clinical variables only) and Ensemble 2 (clinical variables and DXA imaging features). This staged approach used uncertainty quantification from Ensemble 1 to decide if DXA features are necessary for further prediction. Ensemble 2 exhibited the highest performance, achieving an Area Under the Curve (AUC) of 0.9541, an accuracy of 0.9195, a sensitivity of 0.8078, and a specificity of 0.9427.
A new method of modeling the multi-stage decision-making process of CRT using machine learning with uncertainty quantification
Larsen, Kristoffer, Zhao, Chen, Keyak, Joyce, Sha, Qiuying, Paez, Diana, Zhang, Xinwei, Zou, Jiangang, Peix, Amalia, Zhou, Weihua
Aims. The purpose of this study is to create a multi-stage machine learning model to predict cardiac resynchronization therapy (CRT) response for heart failure (HF) patients. This model exploits uncertainty quantification to recommend additional collection of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) variables if baseline clinical variables and features from electrocardiogram (ECG) are not sufficient. Methods. 218 patients who underwent rest-gated SPECT MPI were enrolled in this study. CRT response was defined as an increase in left ventricular ejection fraction (LVEF) > 5% at a 6 month follow-up. A multi-stage ML model was created by combining two ensemble models. Results. The response rate for CRT was 55.5% (n = 121) with overall male gender 61.0% (n = 133), an average age of 62.0, and LVEF of 27.7. The multi-stage model performed similarly to Ensemble 2 (which utilized the additional SPECT data) with AUC of 0.75 vs. 0.77, accuracy of 0.71 vs. 0.69, sensitivity of 0.70 vs. 0.72, and specificity 0.72 vs. 0.65, respectively. However, the multi-stage model only required SPECT MPI data for 52.7% of the patients across all folds. Conclusions. By using rule-based logic stemming from uncertainty quantification, the multi-stage model was able to reduce the need for additional SPECT MPI data acquisition without sacrificing performance.