Goto

Collaborating Authors

 Lapesa, Gabriella


Towards a Perspectivist Turn in Argument Quality Assessment

arXiv.org Artificial Intelligence

The assessment of argument quality depends on well-established logical, rhetorical, and dialectical properties that are unavoidably subjective: multiple valid assessments may exist, there is no unequivocal ground truth. This aligns with recent paths in machine learning, which embrace the co-existence of different perspectives. However, this potential remains largely unexplored in NLP research on argument quality. One crucial reason seems to be the yet unexplored availability of suitable datasets. We fill this gap by conducting a systematic review of argument quality datasets. We assign them to a multi-layered categorization targeting two aspects: (a) What has been annotated: we collect the quality dimensions covered in datasets and consolidate them in an overarching taxonomy, increasing dataset comparability and interoperability. (b) Who annotated: we survey what information is given about annotators, enabling perspectivist research and grounding our recommendations for future actions. To this end, we discuss datasets suitable for developing perspectivist models (i.e., those containing individual, non-aggregated annotations), and we showcase the importance of a controlled selection of annotators in a pilot study.


Argument Quality Assessment in the Age of Instruction-Following Large Language Models

arXiv.org Artificial Intelligence

The computational treatment of arguments on controversial issues has been subject to extensive NLP research, due to its envisioned impact on opinion formation, decision making, writing education, and the like. A critical task in any such application is the assessment of an argument's quality - but it is also particularly challenging. In this position paper, we start from a brief survey of argument quality research, where we identify the diversity of quality notions and the subjectiveness of their perception as the main hurdles towards substantial progress on argument quality assessment. We argue that the capabilities of instruction-following large language models (LLMs) to leverage knowledge across contexts enable a much more reliable assessment. Rather than just fine-tuning LLMs towards leaderboard chasing on assessment tasks, they need to be instructed systematically with argumentation theories and scenarios as well as with ways to solve argument-related problems. We discuss the real-world opportunities and ethical issues emerging thereby.


Political claim identification and categorization in a multilingual setting: First experiments

arXiv.org Artificial Intelligence

The identification and classification of political claims is an important step in the analysis of political newspaper reports; however, resources for this task are few and far between. This paper explores different strategies for the cross-lingual projection of political claims analysis. We conduct experiments on a German dataset, DebateNet2.0, covering the policy debate sparked by the 2015 refugee crisis. Our evaluation involves two tasks (claim identification and categorization), three languages (German, English, and French) and two methods (machine translation -- the best method in our experiments -- and multilingual embeddings).