Goto

Collaborating Authors

 Lankarany, Milad


Adaptive Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced medical question-answering by leveraging extensive clinical data and medical literature. However, the rapid evolution of medical knowledge and the labor-intensive process of manually updating domain-specific resources pose challenges to the reliability of these systems. To address this, we introduce Adaptive Medical Graph-RAG (AMG-RAG), a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs, integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch. By dynamically linking new findings and complex medical concepts, AMG-RAG not only improves accuracy but also enhances interpretability in medical queries. Evaluations on the MEDQA and MEDMCQA benchmarks demonstrate the effectiveness of AMG-RAG, achieving an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger. Notably, these improvements are achieved without increasing computational overhead, highlighting the critical role of automated knowledge graph generation and external evidence retrieval in delivering up-to-date, trustworthy medical insights.


Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling

arXiv.org Artificial Intelligence

Conditional Flow Matching (CFM) models can generate high-quality samples from a non-informative prior, but they can be slow, often needing hundreds of network evaluations (NFE). To address this, we propose Implicit Dynamical Flow Fusion (IDFF); IDFF learns a new vector field with an additional momentum term that enables taking longer steps during sample generation while maintaining the fidelity of the generated distribution. Consequently, IDFFs reduce the NFEs by a factor of ten (relative to CFMs) without sacrificing sample quality, enabling rapid sampling and efficient handling of image and time-series data generation tasks. We evaluate IDFF on standard benchmarks such as CIFAR-10 and CelebA for image generation, where we achieve likelihood and quality performance comparable to CFMs and diffusion-based models with fewer NFEs. IDFF also shows superior performance on time-series datasets modeling, including molecular simulation and sea surface temperature (SST) datasets, highlighting its versatility and effectiveness across different domains.\href{https://github.com/MrRezaeiUofT/IDFF}{Github Repository}


Stochastic Sparse Sampling: A Framework for Variable-Length Medical Time Series Classification

arXiv.org Artificial Intelligence

While the majority of time series classification research has focused on modeling fixed-length sequences, variable-length time series classification (VTSC) remains critical in healthcare, where sequence length may vary among patients and events. To address this challenge, we propose $\textbf{S}$tochastic $\textbf{S}$parse $\textbf{S}$ampling (SSS), a novel VTSC framework developed for medical time series. SSS manages variable-length sequences by sparsely sampling fixed windows to compute local predictions, which are then aggregated and calibrated to form a global prediction. We apply SSS to the task of seizure onset zone (SOZ) localization, a critical VTSC problem requiring identification of seizure-inducing brain regions from variable-length electrophysiological time series. We evaluate our method on the Epilepsy iEEG Multicenter Dataset, a heterogeneous collection of intracranial electroencephalography (iEEG) recordings obtained from four independent medical centers. SSS demonstrates superior performance compared to state-of-the-art (SOTA) baselines across most medical centers, and superior performance on all out-of-distribution (OOD) unseen medical centers. Additionally, SSS naturally provides post-hoc insights into local signal characteristics related to the SOZ, by visualizing temporally averaged local predictions throughout the signal.


Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis

arXiv.org Artificial Intelligence

The state-space models (SSMs) are widely utilized in the analysis of time-series data. SSMs rely on an explicit definition of the state and observation processes. Characterizing these processes is not always easy and becomes a modeling challenge when the dimension of observed data grows or the observed data distribution deviates from the normal distribution. Here, we propose a new formulation of SSM for high-dimensional observation processes. We call this solution the deep direct discriminative decoder (D4). The D4 brings deep neural networks' expressiveness and scalability to the SSM formulation letting us build a novel solution that efficiently estimates the underlying state processes through high-dimensional observation signal. We demonstrate the D4 solutions in simulated and real data such as Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocampus spiking neural data and show that the D4 performs better than traditional SSMs and RNNs. The D4 can be applied to a broader class of time-series data where the connection between high-dimensional observation and the underlying latent process is hard to characterize.


Uncovering the Origins of Instability in Dynamical Systems: How Attention Mechanism Can Help?

arXiv.org Artificial Intelligence

The behavior of the network and its stability are governed by both dynamics of individual nodes as well as their topological interconnections. Attention mechanism as an integral part of neural network models was initially designed for natural language processing (NLP), and so far, has shown excellent performance in combining dynamics of individual nodes and the coupling strengths between them within a network. Despite undoubted impact of attention mechanism, it is not yet clear why some nodes of a network get higher attention weights. To come up with more explainable solutions, we tried to look at the problem from stability perspective. Based on stability theory, negative connections in a network can create feedback loops or other complex structures by allowing information to flow in the opposite direction. These structures play a critical role in the dynamics of a complex system and can contribute to abnormal synchronization, amplification, or suppression. We hypothesized that those nodes that are involved in organizing such structures can push the entire network into instability modes and therefore need higher attention during analysis. To test this hypothesis, attention mechanism along with spectral and topological stability analyses was performed on a real-world numerical problem, i.e., a linear Multi Input Multi Output state-space model of a piezoelectric tube actuator. The findings of our study suggest that the attention should be directed toward the collective behaviour of imbalanced structures and polarity-driven structural instabilities within the network. The results demonstrated that the nodes receiving more attention cause more instability in the system. Our study provides a proof of concept to understand why perturbing some nodes of a network may cause dramatic changes in the network dynamics.