Lan, Hai
Synthesizer Based Efficient Self-Attention for Vision Tasks
Zhu, Guangyang, Zhang, Jianfeng, Feng, Yuanzhi, Lan, Hai
Self-attention module shows outstanding competence in capturing long-range relationships while enhancing performance on vision tasks, such as image classification and image captioning. However, the self-attention module highly relies on the dot product multiplication and dimension alignment among query-key-value features, which cause two problems: (1) The dot product multiplication results in exhaustive and redundant computation. (2) Due to the visual feature map often appearing as a multi-dimensional tensor, reshaping the scale of the tensor feature to adapt to the dimension alignment might destroy the internal structure of the tensor feature map. To address these problems, this paper proposes a self-attention plug-in module with its variants, namely, Synthesizing Tensor Transformations (STT), for directly processing image tensor features. Without computing the dot-product multiplication among query-key-value, the basic STT is composed of the tensor transformation to learn the synthetic attention weight from visual information. The effectiveness of STT series is validated on the image classification and image caption. Experiments show that the proposed STT achieves competitive performance while keeping robustness compared to self-attention in the aforementioned vision tasks.
Simplicial Message Passing for Chemical Property Prediction
Lan, Hai, Wei, Xian
Recently, message-passing Neural networks (MPNN) provide a promising tool for dealing with molecular graphs and have achieved remarkable success in facilitating the discovery and materials design with desired properties. However, the classical MPNN methods also suffer from a limitation in capturing the strong topological information hidden in molecular structures, such as nonisomorphic graphs. To address this problem, this work proposes a Simplicial Message Passing (SMP) framework to better capture the topological information from molecules, which can break through the limitation within the vanilla message-passing paradigm. In SMP, a generalized message-passing framework is established for aggregating the information from arbitrary-order simplicial complex, and a hierarchical structure is elaborated to allow information exchange between different order simplices. We apply the SMP framework within deep learning architectures for quantum-chemical properties prediction and achieve state-of-the-art results. The results show that compared to traditional MPNN, involving higher-order simplex can better capture the complex structure of molecules and substantially enhance the performance of tasks. The SMP-based model can provide a generalized framework for GNNs and aid in the discovery and design of materials with tailored properties for various applications.
A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration
Lan, Hai, Bao, Zhifeng, Peng, Yuwei
Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects.