Lampinen, Andrew Kyle
The broader spectrum of in-context learning
Lampinen, Andrew Kyle, Chan, Stephanie C. Y., Singh, Aaditya K., Shanahan, Murray
The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit $\unicode{x2014}$ such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization.
Learned feature representations are biased by complexity, learning order, position, and more
Lampinen, Andrew Kyle, Chan, Stephanie C. Y., Hermann, Katherine
Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability $-$ or for comparing the representations of models and brains $-$ disentangling extraneous biases from the computationally important aspects of a system's internal representations.
Combining Behaviors with the Successor Features Keyboard
Carvalho, Wilka, Saraiva, Andre, Filos, Angelos, Lampinen, Andrew Kyle, Matthey, Loic, Lewis, Richard L., Lee, Honglak, Singh, Satinder, Rezende, Danilo J., Zoran, Daniel
The Option Keyboard (OK) was recently proposed as a method for transferring behavioral knowledge across tasks. OK transfers knowledge by adaptively combining subsets of known behaviors using Successor Features (SFs) and Generalized Policy Improvement (GPI). However, it relies on hand-designed state-features and task encodings which are cumbersome to design for every new environment. In this work, we propose the "Successor Features Keyboard" (SFK), which enables transfer with discovered state-features and task encodings. To enable discovery, we propose the "Categorical Successor Feature Approximator" (CSFA), a novel learning algorithm for estimating SFs while jointly discovering state-features and task encodings. With SFK and CSFA, we achieve the first demonstration of transfer with SFs in a challenging 3D environment where all the necessary representations are discovered. We first compare CSFA against other methods for approximating SFs and show that only CSFA discovers representations compatible with SF&GPI at this scale. We then compare SFK against transfer learning baselines and show that it transfers most quickly to long-horizon tasks.
Passive learning of active causal strategies in agents and language models
Lampinen, Andrew Kyle, Chan, Stephanie C Y, Dasgupta, Ishita, Nam, Andrew J, Wang, Jane X
What can be learned about causality and experimentation from passive data? This question is salient given recent successes of passively-trained language models in interactive domains such as tool use. Passive learning is inherently limited. However, we show that purely passive learning can in fact allow an agent to learn generalizable strategies for determining and using causal structures, as long as the agent can intervene at test time. We formally illustrate that learning a strategy of first experimenting, then seeking goals, can allow generalization from passive learning in principle. We then show empirically that agents trained via imitation on expert data can indeed generalize at test time to infer and use causal links which are never present in the training data; these agents can also generalize experimentation strategies to novel variable sets never observed in training. We then show that strategies for causal intervention and exploitation can be generalized from passive data even in a more complex environment with high-dimensional observations, with the support of natural language explanations. Explanations can even allow passive learners to generalize out-of-distribution from perfectly-confounded training data. Finally, we show that language models, trained only on passive next-word prediction, can generalize causal intervention strategies from a few-shot prompt containing examples of experimentation, together with explanations and reasoning. These results highlight the surprising power of passive learning of active causal strategies, and may help to understand the behaviors and capabilities of language models.
Can language models handle recursively nested grammatical structures? A case study on comparing models and humans
Lampinen, Andrew Kyle
How should we compare the capabilities of language models (LMs) and humans? I draw inspiration from comparative psychology to highlight some challenges. In particular, I consider a case study: processing of recursively nested grammatical structures. Prior work suggests that LMs cannot handle these structures as reliably as humans can. However, the humans were provided with instructions and training, while the LMs were evaluated zero-shot. I therefore match the evaluation more closely. Providing large LMs with a simple prompt -- substantially less content than the human training -- allows the LMs to consistently outperform the human results, and even to extrapolate to more deeply nested conditions than were tested with humans. Further, reanalyzing the prior human data suggests that the humans may not perform above chance at the difficult structures initially. Thus, large LMs may indeed process recursively nested grammatical structures as reliably as humans. This case study highlights how discrepancies in the evaluation can confound comparisons of language models and humans. I therefore reflect on the broader challenge of comparing human and model capabilities, and highlight an important difference between evaluating cognitive models and foundation models.
Towards mental time travel: a hierarchical memory for reinforcement learning agents
Lampinen, Andrew Kyle, Chan, Stephanie C. Y., Banino, Andrea, Hill, Felix
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Transformer Memory (HTM), which helps agents to remember the past in detail. HTM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HTM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HTM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HTM can extrapolate to task sequences an order of magnitude longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HTM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.